scholarly journals Characterization of the Genetic Resources of Farmed Tambaqui in Northern Brazil

2017 ◽  
Vol 9 (10) ◽  
pp. 76 ◽  
Author(s):  
Paola F. Fazzi-Gomes ◽  
Nuno F. Melo ◽  
Glauber Palheta ◽  
Jonas Aguiar ◽  
Iracilda Sampaio ◽  
...  

The present study analyzed the genetic variability and structure of farmed tambaqui in the Brazilian state of Pará, and provided basic information that can be used for the development of programs of monitoring and management of genetic resources in the aquaculture operations of northern Brazil. A total of 216 individuals were sampled from tambaqui farms in Pará. Genotyping was based on a multiplex set of 10 tri- and tetra-nucleotide microsatellite markers. The data were used to calculate genetic diversity indices, expected and observed heterozygosity, the number of alleles per locus, allelic richness, and inbreeding coefficient. Genetic structure was verified using DEST and RST, the genetic signature, and Bayesian analysis. The results showed that the tambaqui farms surveyed have suffered a significant loss of genetic variability, and that they are genetically structured, forming two clusters, one encompassing the farms in western Pará, and the other including the farms from the northeast and southeast regions of the state. These finding provide fundamental insights for the development of effective strategies that will help guarantee productivity and the quality of the tambaqui farms of northern Brazil, and provide a database for the upgrading of the genetic variability of these populations. This study indicated the need for hatcheries in southeastern and northeastern Pará to amplify or renew their breeding stocks, in order to avoid the significant loss of genetic diversity in the tambaqui farms of these regions.

2021 ◽  
Vol 1 (5) ◽  
Author(s):  
Azalea Guerra‐García ◽  
Tania Gioia ◽  
Eric Wettberg ◽  
Giuseppina Logozzo ◽  
Roberto Papa ◽  
...  

Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 174 ◽  
Author(s):  
Khanshour ◽  
Hempsey ◽  
Juras ◽  
Cothran

The Cleveland Bay (CB) is the United Kingdom’s oldest established horse breed. In this study we analyzed the genetic variability in CB horses and investigated its genetic relationships with other horse breeds. We examined the genetic variability among 90 CB horses sampled in the USA compared to a total of 3447 horses from 59 other breeds. Analysis of the genetic diversity and population structure was carried out using 15 microsatellite loci. We found that genetic diversity in CB horses was less than that for the majority of other tested breeds. The genetic similarity measures showed no direct relationship between the CB and Thoroughbred but suggested the Turkman horses (likely in the lineage of ancestors of the Thoroughbred) as a possible ancestor. Our findings reveal the genetic uniqueness of the CB breed and indicate its need to be preserved as a genetic resource.


Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 62 ◽  
Author(s):  
Lombardo ◽  
Fila ◽  
Lombardo ◽  
Epifani ◽  
III ◽  
...  

The primary impetus behind this research was to provide a boost to the characterization of the Italian olive biodiversity by acquiring reliable and homogeneous data over the course of an eight-year trial on the floral and fruiting biology of 120 molecularly analyzed cultivars, most of which have either low or very low diffusion. The obtained data highlighted a considerable variability to almost all of the analyzed parameters, which given the uniformity of environment and crop management was indicative of a large genetic variability in the accessions under observation, as confirmed through the molecular analysis. Several cases of synonymy were reported for the first time, even among plants cultivated in different regions, whilst all of the varieties examined, with only one exception, showed very low percentages of self-fruit-set, indicating a need for the employment of suitable pollinator plants. Eventually, a fitted model allowed us to evaluate the clear effects of the thermal values on blossoming, particularly in the months of March and April, whereas the climatic conditions during the flowering time had only a modest effect on its duration.


2014 ◽  
Vol 9 (8) ◽  
pp. 761-767
Author(s):  
Ivana Dokupilová ◽  
Daniele Migliaro ◽  
Daniel Mihálik ◽  
Manna Crespan ◽  
Ján Kraic

AbstractMicrosatellites were used as a very effective tool for genetic diversity analysis and characterization of 51 grapevine (Vitis vinifera L.) accessions from the national collection of genetic resources. Genetic diversity was relatively high, 8.91 alleles were detected per analysed microsatellite locus in average, and fifty-one accessions were distinguished into 45 groups. Distribution of recent Slovak cultivars across the dendrogram accented both their genetic diversity and the effectiveness of the national breeding program in maintaining genetic diversity and generating new genetic variants. Each cultivar was different from the others and twelve of them contained 77.6% of the total genetic diversity of the whole analysed set. Microsatellite patterns were also able to confirm parentage in selected Slovak cultivars. An unusual phenomenon of triallelism was also detected in one of the analysed accessions. The present study has initiated molecular characterization within the national grapevine genetic resource collection and their comparison with well-established international cultivars.


2020 ◽  
Vol 14 (3) ◽  
pp. 3
Author(s):  
Tati Barus ◽  
Jason Wiranata Sanjaya ◽  
Anastasia Tatik Hartanti ◽  
Adi Yulandi ◽  
Vivitri Dewi Prasasty ◽  
...  

Abstract. Soybeans tempeh (tempeh) is processed by fermentation using Rhizopus spp. Tempeh is an important source of protein in Indonesia. The traditional inoculum in fermentation locally is known as Usar which is made from the leaves of Hibiscus tiliaceus. However, Rhizopus information from Usar is still limited. Therefore, this study aims to identify and investigate the genetic diversity of Rhizopus species from Usar and tempeh based on the Internal Transcribed Spacer (ITS) sequence and the Random Amplified Polymorphic DNA (RAPD) markers. Twenty-three Rhizopus strains were isolated from Usar and ten Rhizopus strains were isolated from tempeh. Based on ITS sequences, the isolates were similar to R Rhizopus microsporus (30 isolates) and Rhizopus delemar (3 isolates) with 98-99% similarity. The genetics of R. microsporus and R. delemar are varied and different from the genetics of R. microsporus from tempeh. The growth temperature of R. microsporus varies from 33 to 48°C and R. delemar can grow to a maximum at 33°C. The role of R. microsporus and R. delemar from Usar in determining the quality of tempeh is still limited. Therefore, it needs to be investigated further.


1994 ◽  
Vol 1 (1) ◽  
pp. 46 ◽  
Author(s):  
Richard Southgate ◽  
Mark Adams

The taxonomic status of and genetic diversity amongst extant populations of the greater bilby, Macrotis lagotis, were assessed using allozyme electrophoresis. A total of 47 bilbies sampled from three geographic areas and two captive colonies were screened for 42 loci, six of which were polymorphic. The results are consistent with the view that all extant populations represent a single biological species. All populations were genetically very similar (Nei D's 0.000 to 0.004) and overall levels of within-population genetic variability were low (Ho 0.004 � 0.004 to 0.0026 � 0.017). The allozyme data support the hypothesis that there has been no significant loss of variability in the captive colonies when compared to the species as a whole.


2021 ◽  
Author(s):  
María Eugenia Barrandeguy ◽  
María Victoria García

Genetic diversity comprises the total of genetic variability contained in a population and it represents the fundamental component of changes since it determines the microevolutionary potential of populations. There are several measures for quantifying the genetic diversity, most notably measures based on heterozygosity and measures based on allelic richness, i.e. the expected number of alleles in populations of same size. These measures differ in their theoretical background and, in consequence, they differ in their ecological and evolutionary interpretations. Therefore, in the present chapter these measures of genetic diversity were jointly analyzed, highlighting the changes expected as consequence of gene flow and genetic drift. To develop this analysis, computational simulations of extreme scenarios combining changes in the levels of gene flow and population size were performed.


2017 ◽  
Author(s):  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Virgilio Hermoso ◽  
Charlotte Veyssiere ◽  
Nicolas Poulet ◽  
...  

AbstractIntraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne River basin, France) to determine hot- and cold-spots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness, classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


2017 ◽  
Vol 9 (4) ◽  
pp. 508-514 ◽  
Author(s):  
Toscani NGOMPE-DEFFO ◽  
Eric Bertrand KOUAM ◽  
Honoré BEYEGUE-DJONKO ◽  
Mariette ANOUMAA

Characterization of the genetic diversity and analysis of the genetic relationship between accessions of a crop species is a key step in breeding superior cultivars. The main objective of the hereby study was to determine the genetic variation between 30 cowpea accessions collected throughout the eight divisions of the Western Region of Cameroon using qualitative traits. Phenotypic variation of these accessions was evaluated using diversity indices and cluster analyses. A total of twenty qualitative traits were used for the study. Fifteen of them (75%) were polymorphic, displaying each at least two phenotypic classes. The monomorphic characters were growth pattern, leaf color, leaf hairiness, plant hairiness and pod hairiness, each with only one phenotypic class. Results showed a relatively significant level of genetic diversity among the studied cowpea accessions. Overall, the average of the observed and effective number of phenotypic classes per qualitative trait were Na = 2.350 and Ne = 1.828 respectively. The Nei’s genetic diversity and the Shannon weaver diversity index were He = 0.369, ranging from zero (monomorphic trait) to 0.655 (growth habit) and H’ = 0.609, ranging from zero (monomorphic trait) to 0.996 (seed crowding), respectively. The dendrogram constructed from the twenty qualitative traits revealed 05 accessions clusters with the number of accessions in each cluster varying from one to eleven. Information obtained from this study is likely be useful for future cowpea breeding program.


2019 ◽  
Vol 99 (4) ◽  
pp. 833-839
Author(s):  
Son Quang Do ◽  
Lan Thi Phuong Nguyen ◽  
Thinh Hoang Nguyen ◽  
Trung Quoc Nguyen

In this study, partial mitochondrial DNA (mtDNA) D-loop sequences of three Vietnamese indigenous chicken varieties, including Mong Tien Phong, To, and Sau Ngon, were analyzed to access genetic diversity and the maternal lineages of origin. A 525 bp fragment of the mtDNA D-loop region was sequenced from a total of 61 chickens of the three varieties. A neighbor-joining phylogenetic tree was assembled from the haplotypes obtained and reference sequences of mtDNA D-loop sequences of Red Junglefowl and domestic chickens from National Center for Biotechnology Information database. Genetic diversity indices and analysis of molecular variance were performed. Evaluation of genetic relationships between the three varieties was carried out with pairwise fixation index (FST). In total, 16 haplotypes were identified in the chickens studied. These haplotypes were classified in three haplogroups (A, B, and E) with the majority grouped in haplogroup B and haplogroup E. All three chicken varieties studied were distributed into 2–3 haplogroups and all three haplogroups found in this study are also represented by Red Junglefowl. In conclusion, all three Vietnamese indigenous chicken varieties have likely originated from multiple maternal lineages and potentially descended from the Red Junglefowl.


Sign in / Sign up

Export Citation Format

Share Document