Comparative Relationship of Fiber Strength and Yarn Tenacity in Four Cotton Cultivars

2015 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Yongliang Liu ◽  
B. Todd Campbell ◽  
Chris Delhom ◽  
Vikki Martin

<p class="1Body">High volume instrumentation (HVI<sup>TM</sup>) measurement is a primary and routine tool of providing fiber properties to cotton researchers. There have been considerable studies designed to derive yarn quality from acquired fiber quality data by various means, including HVI. There is also of desired information about the comparison of yarn quality within a cotton cultivar or among the cultivars, as such knowledge could be informative in attempts to understand the selection of cotton cultivars. The purpose of this preliminary study was to characterize the fiber HVI strength and yarn skein tenacity of four cotton cultivar harvested from three locations in different crop years. Instead of developing linear regression models from acquired fiber property parameters to predict yarn tenacity, this study applied a simple ratio method (i.e., correct fiber strength or yarn tenacity with fiber micronaire component) to relate fiber strength with yarn tenacity. The results indicate that three cultivars (DP 393, Phytogen 72, and FM 958) show stronger correlation between micronaire corrected yarn tenacity and micronaire corrected fiber HVI strength. It implies the feasibility of utilizing HVI fiber micronaire and strength property data, as a semi-quantitative and fast tool, to compare the yarn tenacity performance within a cotton cultivar or between cultivars.</p>

2019 ◽  
Vol 89 (21-22) ◽  
pp. 4491-4501 ◽  
Author(s):  
Yongliang Liu ◽  
B Todd Campbell ◽  
Christopher Delhom

There has been great interest in assessing yarn tenacity directly from available cotton fiber property data acquired by various means, including high-volume instrumentation (HVI). The HVI test is a primary and routine measurement providing fiber properties to cotton researchers. Knowledge about yarn tenacity within a cotton cultivar or between cultivars could be useful with regard to understanding the selection of cotton cultivars. This study examined the effect of cotton growth location, crop year, and cultivar on three relationships (fiber strength versus fiber micronaire, yarn tenacity versus fiber micronaire, and fiber strength versus yarn tenacity), and found great variations in the Pearson correlation and the gradients of respective regression lines. Instead of developing linear regression models from HVI fiber properties to predict yarn tenacity, this study applied a simple ratio method (i.e. normalized fiber strength or yarn tenacity against five HVI fiber properties) to relate fiber strength with yarn tenacity. The short fiber index was found to have a greater effect on the correlation between modified yarn tenacity and modified fiber strength than micronaire, yellowness, upper-half mean length, or uniformity index. This result implied the feasibility of utilizing HVI fiber short fiber index and strength data, as a semiquantitative and fast approach, to compare yarn tenacity performance within a cotton cultivar or between cultivars.


Author(s):  
Rony Mia ◽  
Sheikh Sad Habib-A-Rasul ◽  
Md Arif Saleh Tasin ◽  
Md Abdullah Al Mamun ◽  
Md Fahim Ahmed ◽  
...  

The purpose of this research was to make a correlation between the fiber and yarn quality based on different properties of the fiber. The properties of cotton fiber were tested by the High Volume Instrument (HVI) machine. Firstly, we collect fiber from a different lot and then tested the properties by the High Volume Instrument (HVI) Machine. After that, we made yarn from that lot and made the same count of yarn. The tested properties were mic, length, maturity, strength, elongation, moisture, etc. The same count of yarn was tested by the USTER EVENESS TESTER machine. Comparing the HVI report and the USTER TESTER report, we saw that how to effect different fiber properties of the different lot on the same count of yarn quality. Then we made a correlation between them. The observation suggested that yarn strength and fineness are depended upon fiber maturity. This paper reports a glimpse of the effect of fiber properties on yarn quality.


2016 ◽  
Vol 87 (9) ◽  
pp. 1025-1039 ◽  
Author(s):  
Shouren Yang ◽  
Stuart Gordon

The derivation and performance of yarn quality prediction models in a program called Cottonspec is reported. Cottonspec incorporates a large database of fiber and yarn data from commercial spinning mills, a series of regression-based models predicting yarn quality from measured cotton fiber quality parameters and yarn specifications and a user interface. The inclusion of independent variables into prediction equations was dependent on the criteria that their inclusion was statistically significant and that variables had a theoretically direct influence on yarn structure. Yarn data was corrected to allow for twist, yarn count and yarn irregularity before correlation with fiber properties. Differences in yarn testing results between mills could be corrected by a Mill Correction Factor. Adherence to these criteria and the ability to draw on the very large database meant prediction ability of the models was excellent, as demonstrated in a series of cross-validations.


Genome ◽  
2021 ◽  
pp. 1-11
Author(s):  
Qi Chen ◽  
Wei Wang ◽  
Sameer Khanal ◽  
Jinlei Han ◽  
Mi Zhang ◽  
...  

Cotton (Gossypium L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a G. mustelinum introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa). Differentially expressed genes (DEGs) of PD94042 and IL9 were identified. Gene Ontology (GO) enrichment analysis showed that the annotated DEGs were rich in two main biological processes and two main molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis likewise showed that the annotated DEGs were mainly enriched in metabolic pathways and biosynthesis of secondary metabolites. In total, 52 DEGs were selected as candidate genes based on comparison of the DEGs and GO function annotation information. Quantitative real-time PCR (RT-qPCR) analysis results for 12 randomly selected DEGs were consistent with transcriptome analysis. SNP identification based on G. mustelinum chromatin segment introgression showed that 394 SNPs were identified in 268 DEGs, and two genes with known functions were identified within fiber strength quantitative trait loci (QTL) regions or near the confidence intervals. We identified 52 key genes potentially related to high fiber strength in a G. mustelinum introgression line and provided significant insights into the study of cotton fiber quality improvement.


2019 ◽  
Vol 56 (1) ◽  
pp. 26-36
Author(s):  
Muhammad Asghar Shah ◽  
Mubshar Hussain ◽  
Muhammad Shahzad ◽  
Khawar Jabran ◽  
Sami Ul-Allah ◽  
...  

AbstractIn cotton–wheat cropping system of Pakistan, wheat (Triticum aestivum L.) is harvested in late April; however, the optimum sowing time of Bt cotton is mid-March. This indicates a time difference of 4–6 weeks between the harvest of wheat and cotton sowing. It is hypothesized that this overlapping period may be managed by transplanting cotton seedlings (30–45 days old) in late April, after the harvest of wheat due to better performance of already established seedlings. To this end, this study was conducted to evaluate the allometric traits and fiber quality of transplanted Bt cotton after harvesting wheat in the cotton–wheat cropping system. The Bt cotton–wheat cropping systems were flat sown wheat (FSW)–conventionally tilled cotton, FSW–zero tilled cotton, ridge sown wheat–ridge transplanted cotton using 30- and 45-days-old seedlings, and bed sown wheat (BSW)–bed transplanted cotton (BTC) also using 30- and 45-days-old seedlings. The study was conducted at Vehari and Multan in Punjab, Pakistan. Bt cotton in BSW–BTC with 45-days-old seedlings showed better performance for allometric (leaf area index; (LAI), net assimilation rate; (NAR), and crop growth rate; (CGR)), seed cotton yield, and fiber traits (fiber uniformity, fiber length, fiber strength, and fiber fineness) in comparison to other treatments. Most of the fiber quality traits were positively correlated with allometric traits and biological yield (dry matter yield at maturity) at both locations, except correlations of CGR and LAI with fiber fineness and fiber length and NAR with fiber length. As plant growth and fiber quality of transplanted cotton was significantly higher than conventionally grown cotton, our data indicate transplanting is an interesting management practice for improving productivity in wheat–cotton cropping systems.


2020 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
. HASNAM ◽  
EMY SULISTYOWATI ◽  
SIWI SUMARTINI ◽  
FITRINTNGDYAH TRI KADARWATI ◽  
PRIMA D. RIAJAYA

<p>Tujuan utama pemuliaan kapas di Indonesia adalah meningkatkan produktivitas dan kualitas serat dalam upaya meningkatkan pendapatan petani dan memperbaiki mutu benang tcnun seta kualitas tekstil yang harus bersaing di pasar internasional. Scjumlah enam persilangan telah dilakukan antara dua varietas dai India. I.RA 5166 dan SRT-1 dengan dua varietas dai Amerika Serikat, Dcltapine 55 dan Deltapinc Acala 90 dan satu vaietas dai Australia, Siokra. Seleksi individu, seleksi galur dan seleksi individu dalam galur dilaksanakan pada generasi F2 sampai F5 berdasarkan jumlah buah, tingkat kerusakan daun terhadap Sundapteryx biguttula. dan mutu serat; semua proses di atas dilakukan pada kondisi lahan tadah hujan, dan tanpa penggunaan insektisida terhadap tanaman; dari proses di atas diperoleh 12 galur harapan. Sejumlah 13 percobaan dilakukan antara tahun 1993 sampai dengan 2001 untuk mengamati kcragaan galur-galur baru tersebut; pengujian dilakukan di Jawa Timur dan Sulawesi Selatan, menggunakan teknik-teknik penelitian standar. Dengan proscdur ini dapat diidcntifikasi beberapa galur yang menunjuk¬ kan perbaikan serenlak hasil dan kualitas serat kapas. Beberapa penelitian juga dilakukan untuk mcngcvaluasi tanggap galur-galur tersebut pada tumpangsari dengan kedelai dan kacang hijau di Jawa Timur. Dua galur, 88003/16/2 dan 92016/6 (sudah dilepas dengan nama vaietas Kanesia 8 dan Kanesia 9 pada bulan Juni 2003), menunjukkan produktivitas dan kualitas serai yang lebih linggi. Rata-rata, kedua vaietas menghasilkan 1.85 ton dan 191 ton kapas berbiji per hektar atau 8-12% lebih tinggi dai hasil vaietas Kanesia 7 yang sudah dilepas sebelumnya. Persentase serat 35.2%, kekuatan serat berkisar antara 22.6-24.7 gram tex'1, serat lebih panjang dan berkisar 29.2-30.3 mm sedangkan angka mikroncr lebih rendah yang menyatakan bahwa serat lebih halus. Semua perbaikan di atas menunjukkan perbaikan mutu serat. Kanesia 8 dan Kanesia 9 juga menunjukkan peningkatan ketahanan terhadap Sundapteryx biguttula dan komplcks hama kapas. Kanesia 8 dan Kanesia 9 kurang kompctitif dalam tumpang sari dengan kedelai jika dibandingkan dengan Kanesia 7. Pada tumpang sari dengan kacang hijau Kanesia 8 juga mengalami kehilangan hasil yang tinggi, sedangkan Kanesia 9 menunjukkan toleransi yang tinggi dalam kompctisi dengan kacang hijau. Pelepasan Kanesia 8 dan Kanesia 9 akan memberikan pilihan varietas yang lebih banyak bagi petani dan perusahaan pemintalan untuk menyesuaikan dengan produk akhirnya.</p><p>Kata kunci : Gossypium hirsutum, prosedur pemuliaan, produktivitas, kualitas serat, Sundapteryx biguttula, tumpangsari</p><p> </p><p><strong>ABSTRACT </strong></p><p><strong>Genetic improvement on two new cotton varieties, Kanesia 8 and Kanesia 9</strong></p><p>The main objective of cotton breeding in Indonesia is to improve productivity and fiber quality which is aimed to increase farmers' income and to make beter yam and textile quality that has to compete in international market Six crosses were made between two Indian varieties, LRA 5166 and SRT-1 with two USA vaieties, Deltapine 55 and Deltapinc Acala 90 and one Australian variety, Siokra. Individual plants, lines and individual within lines were selected on F2-F5 generations based on boll- counts, leaf-damage by jassids and fiber traits, those were conducted under rainfed and insecticide-ree condition; twelve promising lines were produced from this process. A total of 13 trials were carried out to observe performance of these new lines during 1993 to 2001; those were located in East Java and South Sulawesi using the standardized experimental techniques. By these procedures make it possible to identify several breeding lines showing simultaneous improvement in yield and fiber quality. Several tests were also made to evaluate response of those lines under intercropping with soybean and mungbean, which were located in East Java. Two breeding lines, 88003/16/2 and 92016/6 (those have been released as Kanesia 8 and Kanesia 9 in 2003), showed higher productivity and fiber quality. In average, these new vaieties produced 1.85 and 1.91 ton ha'1 seed cotton respectively or 8 to 12% higher than those on Kanesia 7, the previously released vaiety. Lint turn-out was 35.2% fiber-strength was varied from 22.6 to 24.7 gram tex'1 , fiber lengths ranged from 29.2 to 30.3 mm with lower micronaire-valucs indicating better fiber-ineness. All of those improvements represented a trend toward a higher quality iber. Kanesia 8 and Kanesia 9 also showed a slight improvement in resistance to jasssids and insect pest-complex. Kanesia 8 and Kanesia 9 performed lower competitive ability under intercropping with soybean in comparison with Kanesia 7. Under intercropping with mungbean Kanesia 8 also suffered high yield loss, wherein Kanesia 9 showed good tolerance to mungbean. The release of Kanesia 8 and Kanesia 9 is expected to give a broader choice for the cotton growers and spinning-mills to match with their inal product.</p><p>Key words: Coton (Gossypium hirsutum), breeding procedure, productivity, liber quality, Sundapteryx bigullul. inter¬ cropping.</p>


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Mayara Fávero Cotrim ◽  
Francisco José Correa Farias ◽  
Luiz Paulo de Carvalho ◽  
Larissa Pereira Ribeiro Teodoro ◽  
Carlos Antonio da Silva Junior ◽  
...  

Studies on the adaptability and stability are fundamental for plant breeding as they are an alternative to reduce the effects of genotypes x environments interaction (GxE). Moreover, they help identify cultivars with predictable behavior, which are responsive to environmental improvements, subsidizing cultivar recommendation. This study aimed to investigate the genotypes x environments interaction in cotton genotypes grown in the Brazilian Cerrado and identify genotypes for favorable and unfavorable environments. During the 2013/2014 and 2014/2015 seasons, 19 competition trials were carried out with cotton in a randomized block design, with 12 treatments, and four replications. The traits cotton seed yield, fiber percentage, fiber length, and fiber strength were evaluated. Results revealed significant GxE interaction for all the fiber traits evaluated. Genotype BRS 369 RF revealed general adaptability and high predictability for the fiber traits evaluated.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0015
Author(s):  
Kristin C. Caolo ◽  
Scott J. Ellis ◽  
Jonathan T. Deland ◽  
Constantine A. Demetracopoulos

Category: Ankle; Ankle Arthritis Introduction/Purpose: Surgeons who perform a higher volume of total ankle arthroplasty (TAA) are known to have decreased complication rates; evidence shows that low volume centers performing TAA have decreased survivorship when compared with high volume centers. Understanding differences in outcomes for patients traveling different distances for their TAA is important for future patients deciding where to travel for their surgery. No study has previously examined differences in outcomes of patients traveling different distances to a high volume center for their TAA. This study compares preoperative and postoperative PROMIS scores for patients undergoing total ankle arthroplasty who traveled less than and more than 50 miles for their TAA. We hypothesized that there would be no difference in outcome scores based on distance traveled or estimated drive time. Methods: This study is a single center retrospective review of 162 patients undergoing primary total ankle arthroplasty between January 2016 and December 2018. We collected the primary address as listed in the patient’s medical record and used the directions feature on Google Maps to estimate driving mileage and estimated driving time from the patient’s address to the hospital. To analyze the distance patients traveled, patients were divided into two groups: <50 miles traveled (n=91) and >50 miles traveled (n=71). To analyze the estimated drive time, patients were divided into two groups: <90 minutes (n=77), >90 minutes (n=85). We collected preoperative and most recent postoperative PROMIS scores for all patients. Differences in most recent post-operative PROMIS scores between distance groups and travel time groups were assessed using multivariable linear regression models, adjusting for the pre-operative score and follow-up time. Results: We found no significant difference in post-operative PROMIS scores between the two groups when analyzed for distance traveled or for estimated travel time after adjustment for pre-operative PROMIS score and follow-up time (Table 1). The average follow-up for all 162 patients was 1.49 years. Power analysis showed that with a sample size of 110 (55 in each group), we had 81% power to detect an effect size of 4. Patients saw an increase in their Physical Function scores and a decrease in their Pain Interference and Pain Intensity scores with postoperative scores better than population means (Table 1). Overall complication rate for the <50 miles group was 17.6%, 7.7% required surgery. The >50 miles group had an overall complication rate of 24.0%, 9.9% required surgery. Conclusion: Patients traveling further distances to a high volume orthopedic specialty hospital for their total ankle arthroplasty do not have different clinical outcomes than patients traveling shorter distances. This is particularly important for patients deciding where to have their total ankle arthroplasty surgery. Patients who travel further have the opportunity to be treated at a local academic center; however our results show that outcomes do not change when traveling further for total ankle arthroplasty. [Table: see text]


2013 ◽  
Vol 8 (2) ◽  
pp. 155892501300800 ◽  
Author(s):  
Abdul Jabbar ◽  
Tanveer Hussain ◽  
Abdul Moqeet

The impact of card cylinder speed, card production rate and draw frame doubling on cotton yarn quality parameters was investigated by using the Box-Behnken experimental design. It was found that yarn tenacity, elongation and hairiness increase by increasing the number of draw frame doubling up to a certain level and then decrease by further increase in doubling. Yarn unevenness increased by increasing card production rate and total yarn imperfections increased by decreasing card cylinder speed and increasing card production rate.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiang Ma ◽  
Nuohan Wang ◽  
Pengbo Hao ◽  
Huiru Sun ◽  
Congcong Wang ◽  
...  

Abstract Background Cotton fiber length and strength are both key traits of fiber quality, and fiber strength (FS) is tightly correlated with secondary cell wall (SCW) biosynthesis. The three-amino-acid-loop-extension (TALE) superclass homeoproteins are involved in regulating diverse biological processes in plants, and some TALE members has been identified to play a key role in regulating SCW formation. However, little is known about the functions of TALE members in cotton (Gossypium spp.). Results In the present study, based on gene homology, 46, 47, 88 and 94 TALE superfamily genes were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, respectively. Phylogenetic and evolutionary analysis showed the evolutionary conservation of two cotton TALE families (including BEL1-like and KNOX families). Gene structure analysis also indicated the conservation of GhTALE members under selection. The analysis of promoter cis-elements and expression patterns suggested potential transcriptional regulation functions in fiber SCW biosynthesis and responses to some phytohormones for GhTALE proteins. Genome-wide analysis of colocalization of TALE transcription factors with SCW-related QTLs revealed that some BEL1-like genes and KNAT7 homologs may participate in the regulation of cotton fiber strength formation. Overexpression of GhKNAT7-A03 and GhBLH6-A13 significantly inhibited the synthesis of lignocellulose in interfascicular fibers of Arabidopsis. Yeast two-hybrid (Y2H) experiments showed extensive heteromeric interactions between GhKNAT7 homologs and some GhBEL1-like proteins. Yeast one-hybrid (Y1H) experiments identified the upstream GhMYB46 binding sites in the promoter region of GhTALE members and defined the downstream genes that can be directly bound and regulated by GhTALE heterodimers. Conclusion We comprehensively identified TALE superfamily genes in cotton. Some GhTALE members are predominantly expressed during the cotton fiber SCW thicking stage, and may genetically correlated with the formation of FS. Class II KNOX member GhKNAT7 can interact with some GhBEL1-like members to form the heterodimers to regulate the downstream targets, and this regulatory relationship is partially conserved with Arabidopsis. In summary, this study provides important clues for further elucidating the functions of TALE genes in regulating cotton growth and development, especially in the fiber SCW biosynthesis network, and it also contributes genetic resources to the improvement of cotton fiber quality.


Sign in / Sign up

Export Citation Format

Share Document