scholarly journals Relationship Performance of Cylindrical Detention Pond (CDP) as Depression Storage and Runoff Reduction Under Fully Saturated Condition

2020 ◽  
Vol 17 (2) ◽  
pp. 1539-1546
Author(s):  
H. Maseri ◽  
O. S. Selaman ◽  
M. A. Mannan ◽  
S. N. L. Taib

Permeable pavements are a key Storm water management measure employed both to attenuate surface runoff in urban areas and to filter urban storm water pollutants. Existing permeable pavements (PP) are design with the specific percentage porosity whereby enabling excess rainwater to infiltrate through the system and acting as a depression storage at the same time. Depression storage basically refers to the volume of water trapped in the depression when the precipitation of a storm reaches the ground and filled up all the depression before it can flow over the surface. Cylindrical Detention Pond (CDP) is an alternative paving material that may alleviate many of the hydrological problems caused by urban runoff from developed areas. CDP consist of three basic component; top cover, bottom cover and hollow cylindrical at centre (300 mm thickness). The hollow cylindrical has approximate 50 percent porosity from the total solid of component, which is every 1 inch (25 mm) of pavement depth can hold 0.5 inches (12.5 mm) of rain in theoretical. In this study, the depression storage rate of CDP was investigated under three different rainfall intensity scenarios which are 77 mm/hr (low), 153 mm/hr (medium), and 230 mm/hr (heavy) respectively whereby it function to monitoring the analytical trend line. The experiment was conducted in model box in the laboratory under fully saturated condition. It found that the CDP can performed to detent the water until 180 min of excess rainfall for all 2 year ARI, 5 year ARI, 10 year ARI, 20 year ARI, 50 year ARI and 100 year ARI with different rates. CDP’s able to reduce the runoff up to 77% of the total rainfall volume. The result was proved the hollow cylindrical at centre of CDP very effective in runoff volume reduction according to the different ARI trend line projection.

2021 ◽  
Author(s):  
ARUNA V ◽  
Suja R ◽  
Rajalakshmi C R

Abstract As communities grows, the area covered by rooftops and concreted surfaces increases. Rain water which would have infiltrated, flows across these impermeable surface carrying pollutants along the way. This causes frequent flash floods in urban areas. Effective storm water management is needed for the sustainable development of communities. In this study the runoff generation for a small catchment is quantified and the effectiveness of low impact development (LID) practices (permeable pavements (pp) & vegetative swales) in mitigating the runoff at the source itself is studied using Storm Water Management Model (SWMM). The most influential design storm and the soil type pertaining to the study area were the determining factors for evaluating the impact of LID’s. The steady flow model and Hortons’s infiltration parameters for the soil type in study area were adopted for the analysis. The permeable pavements and swales performed well in reducing the runoff but the swales were less efficient in reducing the runoff, and the runoff reduction potential of permeable pavements and swales are 4.48% and 2.05% respectively. Runoff reduction is more efficient in case of combination of permeable pavements and vegetative swales as LIDs. The percentage reduction in runoff is about 6.05% and the efficiency of the combination type LID is about 17%. The results from simulation show that the low impact development practices are efficient in mimicking the pre-development hydrologic conditions of the landscape to a great extent.


2018 ◽  
Vol 11 (6) ◽  
pp. 27 ◽  
Author(s):  
Pengfei Zhang ◽  
Samuel T. Ariaratnam

The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic activities. Subsequently, numerous natural land resources such as green areas or porous soil, which are less flood-prone and more permeable are being converted into buildings, parking lots, roads and underground utilities that are less permeable to storm water runoff from rain events. With the diminishing of the natural landscape that can drain storm water during a rainfall event, urban underground drainage systems are being designed and built to tackle the excess runoff resulting from urbanization. However, the rapid pace of urbanization has profoundly affected the formation of urban runoff thus resulting in the existing underground drainage system being unable to handle current flow conditions. This paper discusses storm water impacts in urbanized areas globally by reviewing historical storm water events and mitigation strategies accompanied with runoff reduction performance that are considered simultaneously for the purpose of relieving the stress on underground drainage systems. It was found that the stormwater impact on ten selected typical urban areas were enormously destructive followed by billions of direct economy loss, fatalities, damaged properties and residents’ relocations. Furthermore, the meta-analysis of selected six runoff mitigation methods indicated that the average runoff reduction percent ranged from 43% to 61% under different rain events in various installed sites across different event years.


2017 ◽  
Vol 8 (1) ◽  
pp. 16-24
Author(s):  
D.Y.S. Mah ◽  
T. Y. Ho

This study explores the concept of utilising roundabout as a component of the urban stormwater system. The research team has developed a drainage model to incorporate a roundabout as dry detention pond. In addition, the model is used to determine the effectiveness of such design by applying the concept virtually on a real-world roundabout at the southeast of UniGarden, a housing estate situated about 17 km from Kuching City of Sarawak. Computer representations of the existing drainage system and roundabout dry detention pond are built using the USEPA SWMM software. The modelling effort shows that the open space provided by a large roundabout is capable of achieving the maximum attenuation of storm flows and is able to hold 100% of runoff from 100-year storm. As empty spaces are increasingly hard to come by in urban areas; therefore, using an open space in a roundabout for dry detention pond is a good example of an innovative drainage system.


2021 ◽  
Vol 13 (3) ◽  
pp. 1443
Author(s):  
Fawaz Alharbi ◽  
Meshal Almoshaogeh ◽  
Md. Shafiquzzaman ◽  
Husnain Haider ◽  
Md. Rafiquzzaman ◽  
...  

Permeable pavement provides sustainable solutions for urban stormwater management. In this research, the potential of rice bran mixed porous clay bricks were evaluated for permeable pavements. Physical, mechanical and hydrological properties along with stormwater treatment capabilities of the brick samples were assessed. The study found that ratio of rice bran and clay soil has significant impacts on the properties of the produced bricks. Water adsorption and porosity increased with increasing rice bran ratio. Compressive strength of brick samples decreased from 29.6 MPa to 6.9 MPa when the ratio of rice bran was increased from 0% to 20%. The permeability coefficient increased from 4 × 10−4 to 1.39 × 10−2 mm/s with the increase in rice bran from 0% to 30%. The preamble clay bricks were efficient to remove turbidity, total suspended solids (TSS), five days’ biochemical oxygen demand (BOD5), and heavy metals (Mn, Cu, and Zn) from stormwater to meet the World Health Organization (WHO) standard for wastewater reuse application. The bricks with ≤10% of rice bran achieved the American Society for Testing and Materials (ASTM) standard of the desire compressive strength and permeability coefficient for pedestrian and light traffic pavements. The porous bricks prepared in this study can be used to construct permeable pavements and would be a sustainable low impact developments technique for stormwater management in urban areas.


2021 ◽  
Author(s):  
Gustavo Otranto-da-Silva

<div> <p><span>A city's response to a rainfall event depends not only on the rainfall spatial-temporal variability, but also on the spatial distribution and the initial state of its Blue Green Solutions (BGS), such as green roofs. They hold back runoff and may prove being critically important elements of blue-green build environment.</span></p> </div><div> <p><span>The aim of this study was first to adapt the existing hydrological model to the urban area of Melun (France), to validate it and then to assess numerically an optimal configuration of green roofs to mitigate pluvial floods for particularly vulnerable areas. </span><span>The main focus was put on the investigation of interactions between rainfall space-time scales and resulting hydrological response over fine scales, all being controlled by the performance assessment of BGS. </span></p> </div><div> <p><span>This presentation will particularly illustrate how fractal </span><span>tools were used to:</span></p> </div><div> <p><span>- highlight the scale dependency of the input variables and its e</span><span>ff</span><span>ects on gridded model performance;</span></p> </div><div> <p><span>- explore, </span><span>analyse</span><span> and represent the influence of BGS location and configuration on the mitigation of runoff associated with short-duration, high-intensity rainfall at neighborhood scale;</span></p> </div><div> <p><span> - identify the urban design options that maximize the potential for runoff reduction</span><span>. </span></p> </div><div> <p><span>In overall, these </span><span>results may serve as a referential </span><span>for upscaling the optimized implementation of BGS in urban areas, by considering other urban infrastructures and their interactions.</span></p> </div>


2020 ◽  
Vol 3 (2) ◽  
pp. 143-154
Author(s):  
Rahmat Faizal ◽  
Noerman Adi Prasetya ◽  
Zikri Alstony ◽  
Aditya Rahman

Tarakan City experiences problems with standing water during the rainy season, especially in the west Tarakan sub-district which is the center of Tarakan. This puddle not only submerged settlements and offices but also shops and access roads that caused considerable economic losses. An evaluation was carried out by using the Storm Water Management Model (SWMM). SWMM is a rainfall-runoff simulation model used for simulating the quantity and quality of surface runoff from urban areas. Based on the evaluation using SWMM software, the drainage system in Tarakan, especially in Jalan Mulwarman has several inundated channels, namely channels 2, 3, 4, 5, 6, 7, 11, 12, 13, 14. This is influenced by the dimensions of the drainage channel that cannot accommodate existing water runoff and sediment thickness that covers the drainage channels so that the capacity is reduced, if it rains it will cause puddles at several points in Tarakan City. In order to deal with these puddles, it is necessary to change the dimensions of the channel and routinely dredge sediments that cover the drainage channels.


2006 ◽  
Vol 1 (1) ◽  
Author(s):  
Z. Jin ◽  
F. Sieker ◽  
S. Bandermann ◽  
H. Sieker

Urbanization is accelerating worldwide. One of the negative effects of urbanization is the overloading of the city sewer system. To solve this problem, on-site storm water infiltration proves very promising due to its near natural characteristics and multiple effects on the drainage of stormwater runoff in urban areas. However, the judgment of whether a local area is appropriate to be drained in this way and which infiltration measures are optimal is rather complex and involves analysing a set of influential factors. This judgment depends on not only relevant theoretical considerations, but also a large amount of practical experience and the availability of relevant data, as well. Such a judgment is an unstructured problem and relates to changeable knowledge. To fulfill this task, the so-called expert system, or knowledge-based system, is introduced. One of the advantages of an expert system is that it provides automation of expert-level judgment. This is extremely helpful when an expert-level judgment is needed repeatedly for a large amount of cases, like in the planning of on-site stormwater infiltration systems for an entire city catchment. This paper describes a self-developed expert system tool for developing rule-based expert systems, as well as a case study: using an expert system for the selection of on-site storm water infiltration measures for the city of Chemnitz, Germany.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1415 ◽  
Author(s):  
Abdul Razaq Rezaei ◽  
Zubaidah Ismail ◽  
Mohammad Hossein Niksokhan ◽  
Muhammad Amin Dayarian ◽  
Abu Hanipah Ramli ◽  
...  

The vast development of urban areas has resulted in the increase of stormwater peak runoff and volume. Water quality has also been adversely affected. The best management practices (BMPs) and low impact development (LID) techniques could be applied to urban areas to mitigate these effects. A quantity–quality model was developed to simulate LID practices at the catchment scale using the US Environmental Protection Agency Storm Water Management Model (US EPA SWMM). The purpose of the study was to investigate the impacts of LID techniques on hydrology and water quality. The study was performed in BUNUS catchment in Kuala Lumpur, Malaysia. This study applied vegetated swale and rain garden to assess the model performance at a catchment scale using real field data. The selected LIDs occupied 7% of each subcatchment (of which 40% was swale and 30% was rain garden). The LID removal efficiency was up to 40% and 62% for TN and TSS, respectively. The peak runoff reduction was up to 27% for the rainfall of up to 70 mm, and up to 19% for the rainfall of between 70 and 90 mm, respectively. For the longer storm events of higher than 90 mm the results were not as satisfactory as expected. The model was more effective in peak runoff reduction during the shorter rainfall events. As for the water quality, it was satisfactory in all selected rainfall scenarios.


2002 ◽  
Vol 45 (7) ◽  
pp. 105-112 ◽  
Author(s):  
C. Färm

Accumulation of sediments and water quality were investigated in a wet storm-water detention pond in central Sweden. The drainage area surrounding the pond was covered by a section of highway and secondary roads. Sediment samples were collected from the pond and heavy-metal concentrations analysed subsequently in the laboratory. The depth of accumulated sediments was measured at several points around the pond. The investigation showed that during the 18 months that had passed since the pond was constructed, a 5–8 cm layer of sediments had accumulated near the inlet, and a 1.5 cm layer near the outlet of the pond. Storm water passing through the detention pond showed an average reduction rate of 26–84% for total metal content, 67% for total N, 78% for total P and 92% for COD.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 267-275 ◽  
Author(s):  
S. Herath ◽  
K. Musiake

A modelling approach is presented to simulate infiltration systems in urban areas. The model consists of a hydrological sub-model and an infiltration system sub-model. Infiltration characteristics of individual facilities are first established using steady state numerical simulation of Richards' equation. These are represented as linear relations between the facility water head and infiltration rate for given facility widths. The infiltration system model is obtained by applying continuity equation to infiltration facilities lumped over a sub-catchment. This model is then coupled to a catchment runoff model to simulate storm runoff with infiltration systems. The model is applied to an infiltration system installation in a residential area, where stormwater runoff is monitored in a pilot area and a comparative area. The observed results suggest the method is adequate to evaluate the performance of infiltration systems. Except for the catchment storage routing parameter, all model parameters are determined from physical catchment characteristics.


Sign in / Sign up

Export Citation Format

Share Document