scholarly journals Bending Response and Energy Absorption of Closed-Hat-Section Beams

2016 ◽  
Vol 10 (11) ◽  
pp. 225
Author(s):  
Hafizan Hashim ◽  
Amir Radzi Ab Ghani ◽  
Wahyu Kuntjoro

Many articles on bending collapse but not limited to closed-hat-section beams have been reported mainly from experimental point of view but less in simulation-based approach. Detailed investigation on critical parameters of closed-hat-section beams to examine their energy absorption capability is also less found in the literature. This paper presents the procedure for development and validation of a finite element (FE) model of a closed-hat-section beam under quasi static three-point bending using an explicit nonlinear FE technique. Developed FE models were validated through comparison with existing and present experiment results. Firstly, the existing models were rebulit via present modeling technique using informations provided in the relevant research report. Simulation results of rebuilt model were compared with existing results for verification and validation. Next, to further validate the present model, actual physical experiment replicating the FE model was set up for comparison of results. Validated models were then used in parametric studies in order to investigate the effect of some critical parameters such as plate thickness, flange and web width, and foam filler. Results show that the wall thickness, web width, and filler have direct effect on bending stiffness. Foam filling indicated significant enhancement on the crush and energy absorption of closed-hat-section beams. This study provides detail procedures and research information which will facilitate improvisation of current design as well as the design of foam filled closed-hat-section beams as energy absorbers in impact applications.

Author(s):  
Xilu Zhao ◽  
Chenghai Kong ◽  
Yang Yang ◽  
Ichiro Hagiwara

Abstract Current vehicle energy absorbers face two problems during a collision in that there is only a 70% collapse in length and there is a high initial peak load. These problems arise because the presently used energy-absorbing column is primitive from the point of view of origami. We developed a column called the Reversed Spiral Origami Structure (RSO), which solves the above two problems. However, in the case of existing technology of the RSO, the molding cost of hydroforming is too expensive for application to a real vehicle structure. We therefore conceive a new structure, named the Reversed Torsion Origami Structure (RTO), which has excellent energy absorption in simulation. We can thus develop a manufacturing system for the RTO cheaply. Excellent results are obtained in a physical experiment. The RTO can replace conventional energy absorbers and is expected to be widely used in not only automobile structures but also building structures.


Author(s):  
M. Jahani ◽  
H. Beheshti ◽  
M. Heidari-Rarani

Crash boxes play an important role in different industries as energy absorbers to reduce damage of accidents. An ideal crash box has lower maximum force and higher energy absorption. The aim of this study is to investigate the effect of various parameters such as geometry (diameter and thickness), triggering and filling with polymeric foam on axial crash behaviour of a composite cylindrical cash box. To this end, a composite crash box is modelled in a commercial finite element software, Abaqus, utilising the Hashin failure criterion to predict damage initiation. Linking damage initiation with material degradation rules provides the capability for damage evolution prediction on the basis of fracture energy of different failure modes. A new parameter (β) is defined to study the performance of a crash box with different geometries, triggers and foam-filling. The results show that three different triggering geometries (chamfer, fillet, and tulip) decrease the maximum load about 7-33%, and improved energy absorption about 40-86% compared to the crash box without trigger. Filling a triggered crash box with polymeric foam also improves energy absorption about 20%. Applying both triggering and foam-filling simultaneously on a crash box has a complementary role to receive a better performance.


Author(s):  
Frederik Popig ◽  
Peter Hönisch ◽  
Arnold Kühhorn

The application of high pressure compressor (HPC) rotors manufactured as blisk (Blade Integrated Disk) is ever-expanding in modern jet engine designs. Despite the major advantages of less mass and higher efficiency, the most challenging problem is lower mechanical damping due to the loss of damping between blades root’s and the disk. Mistuning is induced by material inhomogeneities, manufacturing tolerances or wear during use and leads to amplitude magnification and mode localization. From the experimental point of view mistuning can be evaluated via experimental vibration analysis in terms of frequency deviations. Furthermore optical measurements can be evaluated in terms of geometrical deviations between the real and designed geometry. From the structural point of view a mistuned blisk model can be obtained by morphing the nodes of the geometrical tuned FE model or by performing blade individual stiffness mistuning due to modification of Young’s modulus. The following work is focused on the numerical prediction of mistuned blisk vibrations. Therefore, the research blisk of the 4 stage research compressor, manufactured as job-production, is analyzed. For this research blisk optical measurement data as well as experimentally obtained frequency patterns are available. In a first part mistuning identification in terms of experimental vibration analysis and Proper Orthogonal Decomposition of the geometrical deviations is presented. In a second part mistuning modeling in terms of stiffness mistuning and geometrical mistuning is applied to the tuned FE-model and the numerical results are evaluated against experimental data regarding accuracy. Furthermore, the impact of geometrical deviations on mistuning is analyzed.


Author(s):  
Basant K. Parida ◽  
Xudong Xin ◽  
Abdullatif K. Zaouk ◽  
S. K. Punwani

This paper describes the results of quasi-static and dynamic tests of a new shock energy absorber (SEA) capable of high energy absorption while limiting peak dynamic force magnitude in the event of an impact or collision. The SEA utilizes the unique reversible phase transition behavior of Ultra High Molecular Weight Poly-Ethylene (UHMWPE) material under pressure. A prototype drop hammer test confirmed the device’s high energy absorption as well as high damping capabilities at a relatively high deformation rate. The results of the test were used to calibrate a finite element (FE) model that enabled scalability of the SEA for practical applications. Preliminary design and FE simulations were made under a Federal Railroad Administration (FRA) sponsored program toward using a set of SEA as a part of a crash energy management (CEM) system to improve locomotive crashworthiness. The main objective of the program was to prevent locomotive override in the event of an inline collision with a hopper car consist at a closing speed of 30 mph. The FE model, without CEM, was validated to a previously performed full-scale locomotive crashworthiness test at Transportation Technology Center, Inc. (TTCI), Pueblo. The FE simulation results with added CEM system showed successful prevention of locomotive override up to 32.1 mph collision speed. Further scope of using suitably tailored SEA units as buffers to the ends of passenger coaches and tank cars with the objective of enhancing their crashworthiness is discussed.


2007 ◽  
Vol 14 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Christopher Blackwell ◽  
Anthony Palazotto ◽  
Tommy J. George ◽  
Charles J. Cross

Engine failures due to fatigue have cost the Air Force an estimated $400 million dollars per year over the past two decades. Damping treatments capable of reducing the internal stresses of fan and turbine blades to levels where fatigue is less likely to occur have the potential for reducing cost while enhancing reliability. This research evaluates the damping characteristics of magnesium aluminate spinel, MgO+Al2O3, (mag spinel) on titanium plates from an experimental point of view. The material and aspect ratio were chosen to approximate the low aspect ratio blades found in military gas turbine fans. In the past, work has generally been performed on cantilever supported beams, and thus the two-dimensional features of damping were lost. In this study plates were tested with a cantilevered boundary condition, using electrodynamic shaker excitation. The effective test area of each specimen was 4.5 in × 4.5 in. The nominal plate thickness was 0.125 in. Mag spinel was applied to both sides of the plate, at a thickness of 0.01 in, and damping tests were run at room temperature. The effect of the coating was evaluated at the 2nd bending mode (mode 3) and the chord wise bending mode (mode 4). A scanning laser vibrometer revealed the frequency and shape of each mode for the plates. Sine sweeps were used to characterize the damping of the coated and uncoated specimens for the modes tested. The coating increased damping nonlinearly for both modes tested in which the general outcome was similar to that found in beams.


1988 ◽  
Vol 156 (9) ◽  
pp. 117-135 ◽  
Author(s):  
L.P. Gor'kov ◽  
N.B. Kopnin

1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.


2010 ◽  
Vol 44 (21) ◽  
pp. 2487-2507 ◽  
Author(s):  
G. Vargas ◽  
F. Mujika

The aim of this work is to compare from an experimental point of view the determination of in-plane shear strength of unidirectional composite materials by means of two off-axis tests: three-point flexure and tensile. In the case of the off-axis three-point flexure test, the condition of small displacements and the condition of lift-off between the specimen and the fixture supports have been taken into account. Some considerations regarding stress and displacement fields are presented. The in-plane shear characterization has been performed on a carbon fiber reinforced unidirectional laminate with several fiber orientation angles: 10°, 20°, 30°, and 45°. Test conditions for both off-axis experimental methods, in order to ensure their applicability, are presented. Off-axis flexure test is considered more suitable than off-axis tensile test for the determination of in-plane shear strength.


Sign in / Sign up

Export Citation Format

Share Document