scholarly journals Predictive Estimation of Sliding Bearing Load-Carrying Capacity and Tribological Durability

2021 ◽  
Vol 67 (7-8) ◽  
pp. 363-368
Author(s):  
Myron Chernets ◽  
Marek Opielak ◽  
Anatolii Kornienko ◽  
Oleg Radko

A computational method is presented as a method for solving a plane contact problem of the theory of elasticity to determine the contact strength and tribological durability of sliding bearings. The effect of load and radial clearance on the initial contact pressures and their reduction due to wear is studied. The durability of the bearing is estimated. Qualitative and quantitative regularities of changes in contact parameters and durability from the factors under study are established. In particular, it has been shown that both contact angles and maximum contact pressures are approximately linearly dependent on the load, and the durability decreases nonlinearly with increasing load.

2021 ◽  
Vol 49 (3) ◽  
pp. 627-633
Author(s):  
M. Chernets ◽  
A. Kornienko ◽  
O. Radko ◽  
A. Radionenko

Different types of linear bearings (guides) are widely used in practice in various equipment, as in many other areas of human activity. In particular, this applies to cylindrical guides (linear plain bearings) of reciprocating motion. However, despite their considerable distribution, in fact, there are no reasonable methods for calculating the wear and service life of not only metal but also metal-polymer linear bearings. According to the author's method, the influence of load, base diameter and radial clearance on the maximum initial pressures in this bearing was investigated within the plane contact problem of the theory of elasticity. Further, using the computational method according to the author's tribokinetic model of wear during sliding friction, the effect of the composite bushing wear on the change of the initial contact characteristics (contact pressures and contact angle) was evaluated. The forecast calculation of the service life of the bearing depending on the above factors is also carried out. Quantitative and qualitative regularities of dependence of contact pressures and a resource on the accepted factors are established.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740012
Author(s):  
Yi-Li Zhu ◽  
Zhong-Qiao Zheng

In active magnetic bearing (AMB) system, the catcher bearings (CB) are indispensable to temporarily support the rotor from directly impacting the stators. In most cases, traditional CB cannot bear the ultra-high speed, vibrations and impacts after a rotor drop event. To address the shortcomings, a double-decker ball bearing (DDBB) with inner two face-to-face angular contact ball bearings are proposed to be used as CB in an AMB system, and the dynamic response of the rotor after a rotor drop event is experimentally analyzed. The results indicate that using a DDBB as a CB helps to reduce the following collision forces after a rotor drop. Larger ball initial contact angles and smaller pre-load force on the inner layer bearings, larger radial clearance of the outer layer bearing and choosing AISI 10AISI 1045 steel which has a larger density for the adapter ring can effectively reduce the maximum impact force after a rotor drop event.


Author(s):  
Myron Chernets ◽  
Anatolii Kornienko ◽  
Yuriy Chernets ◽  
Svetlana Fedorchuk

The estimation and the analysis of the arising contact pressures and tribotechnical parameters, that is, wear and durability, of metal-polymer spur gears using the author's computational method are presented in this study. Gears with a steel gear and pinion made of polyamide PA6 modified with dispersed carbon fibers (CF) or glass fibers (GF) whose content was 30%, PA6 + 30CF and PA6 + 30GF correspondingly, are studied. This took into account the parity of engagement, the effect of composite pinion teeth wear and gear correction. Quantitative and qualitative regularities of change of the specified parameters depending on composite type and gear correction type are established. It is found that the teeth wear of composite toothed wheels has a significant effect on reducing the values of the initial maximum contact pressures in the engagement. The distribution of linear wear along the teeth working profile and the localization of its maximum values, depending on the correction of engagement, are determined. The minimum durability of metal–polymer gears is calculated by simplified and improved methods. The optimal values of the correction coefficients at which the minimum durability is highest for both combination types of metal–polymer gears with height and angular teeth correction are established. The durability of metal–polymer gears with a driving pinion made of PA6 + 30CF composite calculated with the improved method is about seven times higher than the pinion made of PA6 + 30GF composite. In contrast to the methods of calculation of metal gears known from publications, the method presented in this study takes into account such practically significant factors as change of radii of tooth profile curvature owing to wear, their correction and number of teeth pairs at the engagement. In metal–polymer gears, there are no analytical calculation methods for modelling wear and tribological durability compared with that of the author's method.


Tribologia ◽  
2018 ◽  
Vol 277 (1) ◽  
pp. 11-18
Author(s):  
Myron CHERNETS

The paper presents the results of research undertaken to determine maximum contact pressures, wear, and the life of involute conical spur gear, taking into account gear height correction, tooth engagement, and weargenerated changes in the curvature of their involute profile. Moreover, we have established the following: (a) the initial contact pressures are higher in the internal section with double-single-double tooth engagement; (b) the highest values can be observed at the entry of single tooth engagement; (c) the maximal tooth wear of the wheels in the frontal section will be less than half of that in the internal section; (d) profile shift coefficients have an optimum at which the highest gear life is possible; and (e) gear life in the internal section will be less than half of that the frontal section. The calculations were made for a reduced cylindrical gear using a method developed by the authors. The effect of applied conditions of tooth engagement in the frontal and internal sections of a cylindrical gear ring is shown graphically. In addition, optimal correction coefficients ensuring the longest possible gear life are determined.


1971 ◽  
Vol 38 (3) ◽  
pp. 608-614 ◽  
Author(s):  
Y. C. Pao ◽  
Ting-Shu Wu ◽  
Y. P. Chiu

This paper is concerned with the plane-strain problem of an elastic layer supported on a half-space foundation and indented by a cylinder. A study is presented of the effect of the contact condition at the layer-foundation interface on the contact stresses of the indented layer. For the general problem of elastic indenter or elastic foundation, the integral equations governing the contact stress distribution of the indented layer derived on the basis of two-dimensional theory of elasticity are given and a numerical method of solution is formulated. The limiting contact conditions at the layer-foundation interface are then investigated by considering two extreme cases, one with the indented layer in frictionless contact with the half space and the other with the indented layer rigidly adhered to the half space. Graphs of the bounds on the maximum normal stress occurring in indented elastic layers for the cases of rigid cylindrical indenter and rigid half-space foundation are obtained for possible practical applications. Some results of the elastic indenter problem are also presented and discussed.


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


2002 ◽  
Vol 124 (3) ◽  
pp. 734-744 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


Author(s):  
Shemiao Qi ◽  
Y. S. Ho ◽  
Haipeng Geng ◽  
Lie Yu

In aerodynamic bearings, since the supporting air film is generated by rotor motion, there is no support at the start of motion. As in all such bearings, there is dry rubbing until the rotor achieves sufficient speed to lift-off. Thus, the lower the lift-off speed, the less will be the rubbing and so the greater will be the life of the bearing. This paper focuses on the theoretical prediction of lift-off speed in aerodynamic compliant foil journal bearings based on a generalized solution of elasto-aerodynamically coupled lubrication for compliant foil bearings. A computational method is presented which is used to predict the lift-off speed in aerodynamic foil journal bearings with eccentricity ratio greater than or equal to 1.0. Special emphasis is placed on investigating the effects of the load imposed on the bearing, the nominal radial clearance and the bearing radius on the lift-off speed. The numerical results obtained indicate that lift-off speed decreases with the decrease of load and nominal radial clearance, but with an increase in bearing radius. The eccentricity ratios are all greater than 1.0 at the lift-off speed for the aerodynamic compliant foil journal bearings used in this study.


2000 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

Abstract The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


Sign in / Sign up

Export Citation Format

Share Document