scholarly journals Species diversity of segetal communities in tuber crops and in winter and spring cereals

2013 ◽  
Vol 66 (3) ◽  
pp. 95-102
Author(s):  
Zofia Rzymowska ◽  
Maria Ługowska ◽  
Janina Skrzyczyńska

The work presents the results of studies on the diversity of weed communities in tuber crops as well as in winter and spring cereals under similar climatic and soil conditions. We examined overall species abundance in the groups analysed, the average species number per relevé, as well as weed cover of the study area. Additionally, species composition, number of individual species and their biomass were determined. Dominant species in each crop group were distinguished. Species diversity was determined based on the following ecological indices: the Shannon-Wiener index of biodiversity <em>H’</em> and Simpson’s index of dominance <em>C</em>. The indices were computed on the biomass and number-of-species basis. The objective of the work was to compare the structure and diversity of weed communities in the crops studied. The communities analysed differed in all the characteristics examined. Differences were found between biodiversity and dominance indices calculated for individual crop groups, but their significance depended on the method applied to calculate the indices.

2014 ◽  
Vol 67 (1) ◽  
pp. 39-46
Author(s):  
Maria Ługowska ◽  
Zofia Rzymowska

<p>The work presents the results of a study on the biodiversity of agrocenoses using ecological indices. In order to calculate the measures, phytosociological relevés were made and exact methods were applied in winter cereals, spring cereals, tuber crops and stubble fields. The objective of the work was to compare ecological indices (Simpson’s index of dominance <em>C</em>, Simpson’s index of species richness <em>D,</em> and Shannon-Wiener index of biodiversity <em>H</em>’) calculated using the number of plants and their cover determined based on the degree of presence. Moreover, correlation analysis was conducted between the indices computed using the two approaches applied.</p><p>The results of the study revealed significant differences between all the indices calculated using the exact and approximate methods. In turn, comparisons of the measures computed for individual crops showed significant differences only for potato crops and winter cereals. No significant differences were found between the indicators calculated for spring cereals and stubble fields.</p>


2018 ◽  
Vol 71 (4) ◽  
Author(s):  
Maria Wanic ◽  
Mariola Parzonka ◽  
Dariusz Załuski

Environmentally-friendly solutions are increasingly often applied in crop cultivation technologies. These include, among others, the return of old crops (e.g., spelt wheat) and crop rotation. Ensuring a proper forecrop is essential, especially in the cultivation of winter wheat, which is susceptible to infestation by weeds. However, there is only sparse information on infestation by weeds in the cultivation of winter spelt. In this study, it was assumed that this crop is invaded by weeds to a lesser extent than wheat, especially after unfavorable forecrops. The study was based on a field experiment conducted in the east part of Poland. The aim was to compare the weed infestation of common wheat and spelt wheat grown after peas, oilseed rape, and after itself. Analyses of weed infestation were conducted in 2014–2016. The weed species composition and population size were determined as well as their dry weight. The following indices were calculated: index of species richness, Simpson’s domination index, Shannon–Wiener index of species diversity, and Pielou’s index of evenness. The weed infestation of spelt wheat was higher than that of common wheat during the tillering stage. It was similar in both species during the heading stage. The lowest weed infestation in both cereals was observed on a field where peas had grown. Growing after oilseed rape and after themselves contributed to an increase in weed infestation. Biomass of weeds in a field of spelt was similar after all forecrops, unlike that in wheat, where more biomass was observed after oilseed rape and wheat. A greater share of <em>Apera spica-venti</em> and <em>Viola arvensis</em> was observed in common wheat and spelt grown after oilseed rape and after themselves. Weed communities in spelt were more diverse than in wheat. The forecrops did not differentiate the species diversity in either crop.


2015 ◽  
Vol 55 (1) ◽  
pp. 52-57
Author(s):  
Zbigniew Pawlonka ◽  
Katarzyna Rymuza ◽  
Krzysztof Starczewski ◽  
Antoni Bombik

Abstract The objective of the work reported here was to determine the relationship between herbicide rate and the biodiversity of weed communities in potato cultivated in continuous cropping. A seven-year field experiment was conducted to examine the effect of 4 metribuzin rates and an uncontrol on weed infestation in successive years of continuous potato cultivation. The following indices were calculated: the Shannon-Wiener and Simpson’s indices of species diversity and the Simpson’s index of domination. A total of 33 species were recorded in the experimental plots. Echinochoa crus-galli was the dominant species. The most abundant segetal communities were observed in untreated plots. An application of the herbicide reduced the biodiversity of the agrophytocenosis. Cultivation in continuous cropping increased the species number of the weed community in potato. The herbicide and cultivation in continuous cropping did not significantly affect the biodiversity indices but their values, to a great extent, confirmed the trends revealed by the analysis of weed infestation


1985 ◽  
Vol 20 (2) ◽  
pp. 163-171 ◽  
Author(s):  
H. J. Ferguson ◽  
R. M. McPherson

Carabidae (Coleoptera) were monitored from pitfall trap catches in four soybean cropping systems in Westmoreland Co., Virginia during the summer of 1982. Harpalus pensylvanicus DeGeer, Poecilus chalcites Say, Amara spp., and Agonum octopunctatum Fabricius were the most commonly encountered among the 39 species collected. These four species were more abundant in drill-planted and double-cropped soybean fields which were conservation tillage systems as compared to conventionally plowed fields. Significantly more species per field and more carabids per trap were found during June than in later summer months. The Shannon-Weaver diversity and Berger-Parker dominance indices showed no significant differences in species diversity among the cropping systems. The total number of carabids present in soybeans is more important in comparisons than either species number of species evenness.


2019 ◽  
pp. 118-134
Author(s):  
G. R. Khasanova ◽  
S. M. Yamalov ◽  
M. V. Lebedeva ◽  
Z. Kh. Shigapov

Segetal, or weed, communities are the stands of the weed plant species which are formed under the influence of edafo-climatic conditions and the mode of soil disturbance within the processing of crop rotation (agrotechnical factor) (Mirkin, Naumova, 2012). This paper is the second part of weed community study in the South Ural, assigned to the class Papaveretea rhoeadis S. Brullo et al. 2001, syntaxon unites the weed communities of winter cereals with two orders: Aperetalia spica-venti J. Tx. et Tx. in Malato-Beliz et al. 1960 and Papaveretalia rhoeadis Hüppe et Hofmeister ex Theurillat et al. 1995; and three alliances (Khasanova et al., 2018). Data on diversity, floristic, ecological and spatial differentiation of mesoxeric and xeric weed communities of the alliances Caucalidion Tx. ex von Rochow 1951 and Lactucion tataricae Rudakov in Mirkin et al. 1985 in steppe and southern part of the forest-steppe zones are given (Table 1; Fig. 1). The dataset contains 756 relevés: 647 made by authors during the field seasons of 2002–2018, while 109 taken from published monography (Mirkin et al., 1985). The alliance Caucalidion combines weed communities on rich carbonate chernozem soils in the forest-steppe zone. Diagnostic species are Galeopsis bifida, G. ladanum, Galium aparine, Erodium cicutarium, Persicaria lapathifolia, Silene noctiflora, Thlaspi arvense. This alliance occupies the central position within class between communities of forest zone of the alliance Scleranthion annui and these of the steppe zone of the alliance Lactucion tataricae. The last alliance combines weed communities of the steppe zone and southern part of the forest-steppe one on south and typical chernozem soils. Two species are diagnostic: Lactuca tatarica and Panicum miliaceum. Alliances are differentiated in sample plot species richness and coenoflora: 145 species in alliance Caucalidion coenoflora (mean species number per plot is 16), and 207 species in that of Lactucion tataricae (consequently 13 species). There are 8 associations, 4 subassociations, 6 variants, 1 unrank community within these two alliances, among which 5 associations and all subassociations are new. The alliance Caucalidion includes 4 associations with spatiall and crop differentiation, which are mainly character for the forest-steppe part of the Trans-Urals within the bounds of forest-steppe region of the eastern slope of the Southern Urals. Two associations are new: Cannabio ruderalis–Galeopsietum ladani ass. nov. hoc loco (Table 2; holotypus hoc loco — rele­vé 7) unites weed communities of winter, less often — spring crops; Lycopsio arvensis–Camelinetum microcarpae ass. nov. hoc loco (Table 4; holotypus hoc loco — relevé 3) unites weed communities of row crops, mainly sunflower, less often — cereals. In the same area the communities of the ass. Cannabio ruderalis–Sinapietum arvensis Rudakov in Mirkin et al. 1985 (Table 3) unite the weed communities of mainly winter cereals — wheat and rye. These communities, described in 1980s, previously were widespread in the Trans-Urals (Mirkin et al., 1985), while now occur locally in the northern part of this area. The communities of ass. Centaureo cyani–Stachyetum annuae Abramova in Mirkin et al. 1985, also described in the 1980s, were not found in the 2010s. The diversity of the most xerophytic alliance Lactucion tataricae is represented by 4 associations which occur both in the Trans-Urals and the Cis-Urals. The most common in the last area are weed row crops (beet, nute, flax, sunflower, corn, peas, buckwheat) communities of the ass. Echinochloo crusgalli–Panicetum miliacei ass. nov. hoc loco (Table 5; holotypus hoc loco — relevé 5. They are common in five natural districts: Predbelskiy forest-steppe one, forest and fo­rest-steppe of Belebey Upland, Cis-Urals steppe one, forest and forest-steppe one on Zilair Plateu, and Zabelskiy district of the broad-leaved forests. The weed communities of spring and winter cereals of the ass. Lathyro tuberosi–Convolvuletum arvensis ass. nov. hoc loco (Table 6; holotypus hoc loco — relevé 5) are common only within the Cis-Urals steppe district. The communities of ass. Lactuco serriolae–Tripleurospermetum inodori ass. nov. hoc loco (Table 7; holotypus hoc loco — relevé 2) which unites the weed communities of winter cereals, are common in the steppe zone and the southern part of the forest steppe one of the Trans-Urals and the Cis-Urals within the Cis-Urals steppe, Trans-Urals steppe, and Predbelskiy forest-steppe districts. The communities of the ass. Lactucetum tataricae Rudakov in Mirkin et al. 1985 are associated exclusively with the steppe zone of the Trans-Urals. The Lactuca tatarica community (Table 8), distributed in the steppe and southern part of the forest steppe zones of the Trans-Urals, probably is derived from the ass. Lactucetum tataricae under the intensive chemical weeding of cereal crops. Floristic differentiation of associations is confirmed by the results of the ordination analysis (Fig. 2), the diagram of which shows the distribution of communities along the moisture (first axis) and the complex soil richness–salinity gradient and agrocoenotic factor (second axis).


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Hellen K. Mandela ◽  
Mugatsia H. Tsingalia ◽  
Mary Gikungu ◽  
Wilbur M. Lwande

Pollination is an important ecosystem service in the maintenance of biodiversity and most importantly in food production. Pollination is on the decline due to habitat loss, exotic species invasions, pollution, overharvesting, and land use changes. This study analyzed the abundance and diversity of flower visitors’ of Ocimum kilimandscharicum in Kakamega forest with increasing distance from the forest edge. Data were collected through direct observation and sweep netting. Six study sites were identified along two transects each 2.5 km long and labeled A to F. Distance in metres from the forest edge to each site was A=221, B=72, C=83, D=198, E=113, and F=50. Sampling was done from 7:30 am to 4:00 pm, three days in a week for five months consecutively. Diversity indices of different flower visitors were calculated using the Shannon-Wiener diversity index. One-way analysis of variance was used to compare differences between sites and a two-sample t-test was used to identify mean significant differences in species diversity between the closest and the furthest sites. A total of 645 individuals belonging to 35 species were captured from 4 families. The highest diversity was at site F (H’= 2.38) which was closest to the forest edge and the lowest diversity was from site A (H’=1.44) which was furthest from the forest edge. Distance from the forest edge significantly influenced species diversity (F(3, 20)=14.67, p=0.024). Distance from the forest edge also significantly influenced species abundance between the furthest sites A, D, and E and the nearest sites F, B, and C to the forest edge (t=4.177; p=0.0312) and species richness (t=3.2893; p=0.0187). This study clearly demonstrates that Ocimum kilimandscharicum flower visitors play essential roles in pollination and their higher number of visits translates into higher numbers of seeds set. Many of these pollinators are associated with the forest and hence the need to conserve the Kakamega forest as a source pool for pollinators.


2011 ◽  
Vol 26 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Valentín D. Picasso ◽  
E. Charles Brummer ◽  
Matt Liebman ◽  
Philip M. Dixon ◽  
Brian J. Wilsey

AbstractCropping systems that rely on renewable energy and resources and are based on ecological principles could be more stable and productive into the future than current monoculture systems with serious unintended environmental consequences such as soil erosion and water pollution. In nonagricultural systems, communities with higher species diversity have higher productivity and provide other ecosystem services. However, communities of well-adapted crop species selected for biomass production may respond differently to increasing diversity. Diversity effects may be due to complementarity among species (complementary resource use and facilitative interactions) or positive selection effects (e.g., species with higher productivity dominate the mixture), and these effects may change over time or across environments. Our goal was to identify the ecological mechanisms causing diversity effects in a biodiversity experiment using agriculturally relevant species, and evaluate the implications for the design of sustainable cropping systems. We seeded seven perennial forage species in a replicated field experiment at two locations in Iowa, USA, and evaluated biomass productivity of monocultures and two- to six-species mixtures over 3 years after the establishment year under management systems of contrasting intensity: one or three harvests per year. Productivity increased with seeded species richness in all environments, and the positive relationship did not change over time. Polyculture overyielding was due to complementarity among species in the community rather than to selection effects of individual species. Complementarity increased as a log-linear function of species richness in all environments, and this trend was consistent across years. Legume–grass facilitation may explain much of this complementarity effect. Although individual species with high biomass production had a major effect on productivity of mixtures, the species producing the highest biomass in monoculture changed over the years in most environments. Furthermore, transgressive overyielding was observed and was more prevalent in later years, in some environments. We conclude that choosing a single well-adapted species for maximizing productivity may not be the best alternative over the long term and that high levels of species diversity should be included in the design of productive and ecologically sound agricultural systems.


2014 ◽  
Vol 955-959 ◽  
pp. 3474-3478
Author(s):  
Tie Jun Sun

Experiment was executed to plant Bromus inermis artificially in the degraded ecosystem, and study effect of grass planting on vegetation restoration. The results indicated that natural vegetation restored rapidly in the degraded ecosystem in two years after grass planted. But species diversity changed little in the early period of vegetation restoration, while vegetation biomass, coverage and anti-interference improved quickly. In addition, species number and important value of perennial grasses increased while those of annual grasses decreased. Then community composition with annual plants mainly changed gradually into that with perennial plants mainly after Bromus inermis planted. However, overground biomass and coverage of restored vegetation and dominance of Bromus inermis planted decreased after vegetation cut once a year. And species diversity and important value of annual grasses increased. Thus it could be good for uniformity of species distribution and stability of community composition and structure to develop.


Author(s):  
Neelam Kumar Singh ◽  
Shailendra Kumar

It is emphasize in the paper, that because of qualitative change of ecological data and its complexity the analysis and estimation of population parameter is a complex process. Therefore, for ecological data collection, the sampling frame clearly defined distinct and identifiable. More often, sampling frames are imperfect, further different techniques measure of species diversity, evenness, community similarity, dominance indices has been given which can be useful for research scholars.


Sign in / Sign up

Export Citation Format

Share Document