scholarly journals Diversity of wood-inhabiting fungi in woodpecker nest cavities in southern Poland

2019 ◽  
Vol 54 (1) ◽  
Author(s):  
Robert Jankowiak ◽  
Michał Ciach ◽  
Piotr Bilański ◽  
Riikka Linnakoski

Globally, tree-holes are important ecological component of forest and woodlands. Numerous microorganisms rely on cavities, both natural and those excavated by primary cavity nesting birds, mainly by woodpeckers, for their survival and reproduction. However, the fungi occurring in cavities are not well characterized. Specifically, very little is known about the fungal communities inhabiting the woodpecker nest cavities. Therefore, in this study, we investigated the fungal diversity of cavities in southern Poland. The samples were collected from freshly excavated woodpecker nest cavities using a nondestructive method (ND). The spatial distribution of fungal communities within the cavities was evaluated by sampling different parts of a single cavity using a destructive method (D). We detected 598 fungal isolates that included 64 species in three phyla and 16 orders using the ND method. Most of the fungi isolated from the cavities represented the phylum Ascomycota (73.9% of the isolates) with 11 orders, and Microascales was the predominant order (30% of the isolates). The most common species detected was <em>Petriella musispora</em>, which was isolated from 65% of the cavities. A total of 150 isolates (25%) were members of Basidiomycota, with Hymenochaetales being the dominant order (16% of the isolates). The basidiomycetous fungi were isolated from 55% of the cavities. Several taxa closely related to the pathogenic fungi and associated with secondary animal infections were detected in the wood of cavities. We identified different fungal communities in the three cavity parts using the D method. The cavity entrance had more number of species than the middle and bottom parts. The results of this study advanced our current knowledge on the mycobiota in woodpecker nest cavities and provided preliminary evidence for tree cavities being the hotspot for fungal diversity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianjun Wang ◽  
Xuekai Wei ◽  
Taixiang Chen ◽  
James F. White ◽  
Guiqin Zhao ◽  
...  

Many species of seed-borne fungi are closely allied with seed varieties and growing regions, including many seed-borne pathogens, but their species richness and distribution remain largely unknown. This study was conducted to explore the seed-borne fungal composition, abundance and diversity in Avena sativa (B7) and A. nuda (B2) seed samples collected from Baicheng (BB), Dingxi (DB) and Haibei (HB) city, using Illumina sequencing techniques. Our results show that a total of 543,707 sequences were obtained and these were assigned to 244 operational taxonomic units (OTUs) with 97% similarity. Oat varieties and growing locations had a significant difference on seed-borne fungal diversity. HB had a higher fungal diversity than BB and DB, Shannon diversity and ACE richness index of fungal in HB seeds was significantly higher than in BB and DB (P &lt; 0.05). In different varieties, both taxon richness and evenness of B7 seeds was significantly higher than B2 (P &lt; 0.05). A total of 4 fungal phyla and 26 fungal genera were detected. Ascomycota was the dominant phylum and Alternaria sp. was the most abundant genus in B2 and B7 oat seeds from different regions. Mycosphaerella sp. had a higher abundance in HB7 and DB7, respectively, Epicoccum sp. had a higher abundance in HB7 and BB7. The results of alpha and beta diversity analysis revealed the presence of different effects in fungal communities of different varieties and regions of oat, especially in seed pathogenic fungi distribution. Structural equation modeling also explained oat varieties and growing regions have significant influences on seed-borne fungal abundance, composition and diversity. This study demonstrated that the differences of varieties and regions are the main factors resulting in the changes of seed-borne fungal community of oat.


Author(s):  
Tereza Jedelská ◽  
Lenka Luhová ◽  
Marek Petřivalský

Abstract Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment and biotic interactions. It has become evident that NO is produced and used as signalling and defence cues by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on NO role in plant-pathogen interactions, focused on biotrophic, necrotrophic and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth and active penetration of filamentous pathogens to the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO are highlighted on diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles, where NO in interplay with reactive oxygen species govern successful plant colonization, cell death and resistance establishment.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Iván Franco-Manchón ◽  
Kauko Salo ◽  
Juan Oria-de-Rueda ◽  
José Bonet ◽  
Pablo Martín-Pinto

Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.


2021 ◽  
Author(s):  
Adrienn Geiger ◽  
Zoltán Karácsony ◽  
Richárd Golen ◽  
Kálmán Zoltán Váczy ◽  
József Geml

Grapevine trunk diseases (GTD) are a major threat to the wine industry, causing yield loss and dieback of grapevines. While the increasing damage caused by GTDs in recent decades have spurred several studies on grapevine-associated pathogenic fungi, key questions about the emergence and severity of GTDs remain unanswered, including possible differences in plant pathogenic fungal communities in asymptomatic and symptomatic grapevines. We generated fungal DNA metabarcoding data from soil, bark, and perennial wood samples from asymptomatic and symptomatic grapevines sampled in three terroirs. We observed larger compositional differences in plant pathogenic fungi among different plants parts within grapevine plants than among individual grapevines. This is driven by the dominance of GTD-associated fungi in perennial wood and non-GTD pathogens in soil, as well as by the lack of significant differences among asymptomatic and Esca symptomatic grapevines. These results suggest that fungi generally associated with Esca disease belong to the core grapevine microbiome and likely are commensal endophytes and/or latent saprotrophs, some of which can act as opportunistic pathogens on stressed plants. In addition, we found significant compositional differences among sampling sites, particularly in soil, which suggest a certain influence of local edaphic and mesclimatic factors on plant pathogenic fungal communities. Furthermore, the observed differences among terroirs in plant pathogenic fungal communities in grapevine woody parts indicate that environmental factors likely are important for the development of Esca disease and further studies are needed to investigate the abiotic conditions on fungal compositional dynamics in Esca-affected plants.


2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Francesca De Filippis ◽  
Manolo Laiola ◽  
Giuseppe Blaiotta ◽  
Danilo Ercolini

ABSTRACT Target-gene amplicon sequencing is the most exploited high-throughput sequencing application in microbial ecology. The targets are taxonomically relevant genes, with 16S rRNA being the gold standard for bacteria. As for fungi, the most commonly used target is the internal transcribed spacer (ITS). However, the uneven ITS length among species may promote preferential amplification and sequencing and incorrect estimation of their abundance. Therefore, the use of different targets is desirable. We evaluated the use of three different target amplicons for the characterization of fungal diversity. After an in silico primer evaluation, we compared three amplicons (the ITS1-ITS2 region [ITS1-2], 18S ribosomal small subunit RNA, and the D1/D2 domain of the 26S ribosomal large subunit RNA), using biological samples and a mock community of common fungal species. All three targets allowed for accurate identification of the species present. Nevertheless, high heterogeneity in ITS1-2 length was found, and this caused an overestimation of the abundance of species with a shorter ITS, while both 18S and 26S amplicons allowed for more reliable quantification. We demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies. IMPORTANCE Amplicon-sequencing approaches for fungi may rely on different targets affecting the diversity and abundance of the fungal species. An increasing number of studies will address fungal diversity by high-throughput amplicon sequencing. The description of the communities must be accurate and reliable in order to draw useful insights and to address both ecological and biological questions. By analyzing a mock community and several biological samples, we demonstrate that using different amplicon targets may change the results of fungal microbiota analysis, and we highlight how a careful choice of the target is fundamental for a thorough description of the fungal communities.


2014 ◽  
Vol 19 (2) ◽  
pp. 245-281
Author(s):  
Maria Kutrzeba

Fungal communities isolated from the soil, rhizoplane, rhizosphere, and roots of three varieties of <i>Dactylis glomerata</i> L. (Brudzynska, Motycka and Nakielska) cultivated in mountain conditions were examined. Two species pathogenic for <i>D. glomerata, Fusarium avenaceum</i> and <i>F. culmorum</i> were observed. Then pathogenicity in respect to the three varieties was examined and the effect of particular fungal communities on the pathogenic fungi was established.


Author(s):  
Adrian Valdez ◽  
Sergio Covarrubias

The Andes range in Ecuador presents high biodiversity and characteristic altitudinal gradients, which are frequently threatened by deforestation and farming. In particular, forest have developed in the high inter-Andean alley on volcanic soils forming a unique ecoregion. Little is known on the fungal biodiversity of soil in such high Andean gallery forest submitted to strong degradation pressures. Therefore, in this study we evaluated wether the soil mycobiome was associated with altitudinal gradients during the dry season. Three representative locations were selected based on altitude: A (3,309 meters above the sea level, masl), B (3,809 masl) and C (4,409 masl). High performance sequencing (NGS) of the ITS region of ribosomal DNA genes with Illumina technology was used to explore the fungal taxonomic composition in the soil samples. Our results showed changes in the structure of fungal communities in the different locations, related to the relative abundance of Amplicon Sequence Variants (ASV). Higher fungal diversity was related with the altitudinal gradient with average taxa ranging from 675, 626 and 556 ASVs, respectively from location A to C. The results highlight the complexity and diversity of fungal communities in high Andean forest and the need to protect these unique mycobiomes. The findings in this ecosystem of Ecuador will improve our understanding of distribution, diversity, ecology, and biological perspectives for the restoration of terrestrial microbiomes.


2015 ◽  
Vol 11 (9) ◽  
pp. 20150408 ◽  
Author(s):  
Johan Pansu ◽  
Richard C. Winkworth ◽  
Françoise Hennion ◽  
Ludovic Gielly ◽  
Pierre Taberlet ◽  
...  

During the late nineteenth century, Europeans introduced rabbits to many of the sub-Antarctic islands, environments that prior to this had been devoid of mammalian herbivores. The impacts of rabbits on indigenous ecosystems are well studied; notably, they cause dramatic changes in plant communities and promote soil erosion. However, the responses of fungal communities to such biotic disturbances remain unexplored. We used metabarcoding of soil extracellular DNA to assess the diversity of plant and fungal communities at sites on the sub-Antarctic Kerguelen Islands with contrasting histories of disturbance by rabbits. Our results suggest that on these islands, the simplification of plant communities and increased erosion resulting from the introduction of rabbits have driven compositional changes, including diversity reductions, in indigenous soil fungal communities. Moreover, there is no indication of recovery at sites from which rabbits were removed 20 years ago. These results imply that introduced herbivores have long-lasting and multifaceted effects on fungal biodiversity as well as highlight the low resiliency of sub-Antarctic ecosystems.


2018 ◽  
Vol 25 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Sandra Fonseca ◽  
Dhanya Radhakrishnan ◽  
Kalika Prasad ◽  
Andrea Chini

Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 324
Author(s):  
Brianna K. Almeida ◽  
Michael S. Ross ◽  
Susana L. Stoffella ◽  
Jay P. Sah ◽  
Eric Cline ◽  
...  

Fungi play prominent roles in ecosystem services (e.g., nutrient cycling, decomposition) and thus have increasingly garnered attention in restoration ecology. However, it is unclear how most management decisions impact fungal communities, making it difficult to protect fungal diversity and utilize fungi to improve restoration success. To understand the effects of restoration decisions and environmental variation on fungal communities, we sequenced soil fungal microbiomes from 96 sites across eight experimental Everglades tree islands approximately 15 years after restoration occurred. We found that early restoration decisions can have enduring consequences for fungal communities. Factors experimentally manipulated in 2003–2007 (e.g., type of island core) had significant legacy effects on fungal community composition. Our results also emphasized the role of water regime in fungal diversity, composition, and function. As the relative water level decreased, so did fungal diversity, with an approximately 25% decline in the driest sites. Further, as the water level decreased, the abundance of the plant pathogen–saprotroph guild increased, suggesting that low water may increase plant-pathogen interactions. Our results indicate that early restoration decisions can have long-term consequences for fungal community composition and function and suggest that a drier future in the Everglades could reduce fungal diversity on imperiled tree islands.


Sign in / Sign up

Export Citation Format

Share Document