TRIBOLOGICAL PROPERTIES OF HIGH CARBON STEELS IN AN AS-CAST STATE AND AFTER PLASTIC DEFORMATION

Tribologia ◽  
2017 ◽  
Vol 276 (6) ◽  
pp. 19-26
Author(s):  
Łukasz FROCISZ ◽  
Janusz KRAWCZYK ◽  
Marcin MADEJ

The aim of the study was to conduct dry sliding tests on the designed hypereutectoid steels with the controlled contents increase of carbon, chromium, and manganese. Chromium and manganese were used to balance the changes related to the higher secondary carbides’ precipitation in the chemical composition of the matrix. Samples were investigated by the use of the block on disk friction method under the load of 100 N. The duration of each test was 2000 s with the wear track length approx. 500 m. The samples were investigated in the as-cast state and after hot plastic deformation. Two sets of four samples were prepared from the ingots and plastically deformed material. The heat treated (quenched and tempered) 100Cr6 steel was used as the counter-sample, with a new counter-sample used for each test. The obtained results show a decrease of the average friction coefficient for samples after plastic deformation. The phenomena that influenced this effect the most, observed in the alloy with the higher concentration of alloying elements, were grain boundary net defragmentation of secondary carbides and the elimination of Widmannstaten needles. The main wear mechanisms occurring during the tribological tests were sliding wear and material spalling.

2019 ◽  
Vol 395 ◽  
pp. 1-15 ◽  
Author(s):  
Antonín Kříž ◽  
Vojtěch Průcha

Although heat treatment of high-speed steels has been covered in numerous treatises, their microstructure before treatment still receives insufficient attention. This article therefore explores the relationship between the initial microstructure and resultant properties in heat treated steels for cutting tools and sonotrodes (special tools for ultrasonic welding). As shown in experiments, the size of fragments of primary carbides affects the properties of the matrix after heat treatment and the precipitation of secondary carbides. Hence, the decisive factor is the method by which the initial stock is mechanically worked, as it may produce primary carbides with more uniform distribution and size. In contrast, the article lists some cases where clusters of carbides caused cracking after heat treatment. The article also covers multidirectional forging by which the desired initial microstructure is obtained.


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Xingguo Li ◽  
Bingbing An ◽  
Dongsheng Zhang

Interfacial behavior in the microstructure and the plastic deformation in the protein matrix influence the overall mechanical properties of biological hard tissues. A cohesive finite element model has been developed to investigate the inelastic mechanical properties of bone-like biocomposites consisting of hard mineral crystals embedded in soft biopolymer matrix. In this study, the complex interaction between plastic dissipation in the matrix and bonding properties of the interface between minerals and matrix is revealed, and the effect of such interaction on the toughening of bone-like biocomposites is identified. For the case of strong and intermediate interfaces, the toughness of biocomposites is controlled by the post yield behavior of biopolymer; the matrix with low strain hardening can undergo significant plastic deformation, thereby promoting enhanced fracture toughness of biocomposites. For the case of weak interfaces, the toughness of biocomposites is governed by the bonding property of the interface, and the post-yield behavior of biopolymer shows negligible effect on the toughness. The findings of this study help to direct the path for designing bioinspired materials with superior mechanical properties.


Carbon ◽  
2001 ◽  
Vol 39 (10) ◽  
pp. 1525-1532 ◽  
Author(s):  
Norio Iwashita ◽  
Michael V. Swain ◽  
John S. Field ◽  
Naoto Ohta ◽  
Shingo Bitoh

Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


2007 ◽  
Vol 22 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Balder Ortner

The equation ε(φ, ψ, hkl)=Fij(φ, ψ, hkl)σij can be directly deduced from Hooke’s law. It is shown that the matrix Fij(φ, ψ, hkl) which is usually called X-ray elastic factors, behaves as a second rank tensor. Since this behaviour is the only criterion for the question of whether or not it is a tensor, the F-matrix must be regarded as a second rank tensor. This allows us to make some statements about the structure of the F-matrix on the basis of Neumann’s principle, to find relationships among F-matrices in different measurement directions, and to apply the methods and strategies for the measurement of a second rank tensor. All this is shown in a few examples. It is further shown that a consistent use of the F-matrix can replace all methods for data evaluation which makes use of linear regressions and, in addition, avoids all difficulties and disadvantages of these methods. One of these disadvantages is that the sin2 ψ-method, as well as its derivatives, is generally not correct least square fits of the measured data. This is also shown in an example. The more complicated cases with stress or constitution gradients in the range of the probed volume or stress measurement after plastic deformation are not discussed.


2014 ◽  
Vol 68 (4) ◽  
pp. 413-427 ◽  
Author(s):  
Mirjana Filipovic

The as-cast microstructure of Fe-Cr-C-V white irons consists of M7C3 and vanadium rich M6C5 carbides in austenitic matrix. Vanadium changed the microstructure parameters of phase present in the structure of these alloys, including volume fraction, size and morphology. The degree of martensitic transformation also depended on the content of vanadium in the alloy. The volume fraction of the carbide phase, carbide size and distribution has an important influence on the wear resistance of Fe-Cr-C-V white irons under low-stress abrasion conditions. However, the dynamic fracture toughness of Fe-Cr-C-V irons is determined mainly by the properties of the matrix. The austenite is more effective in this respect than martensite. Since the austenite in these alloys contained very fine M23C6 carbide particles, higher fracture toughness was attributed to a strengthening of the austenite during fracture. Besides, the secondary carbides which precipitate in the matrix regions also influence the abrasion behaviour. By increasing the matrix strength through a dispersion hardening effect, the fine secondary carbides can increase the mechanical support of the carbides. Deformation and appropriate strain hardening occur in the retained austenite of Fe-Cr-C-V alloys under repeated impact loading. The particles of precipitated M23C6 secondary carbides disturb dislocations movement and contribute to increase the effects of strain hardening in Fe-Cr-C-V white irons.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


Sign in / Sign up

Export Citation Format

Share Document