Shape stability of chosen thin wood based panels after heating

2019 ◽  
Vol 106 ◽  
pp. 85-89
Author(s):  
MACIEJ SYDOR ◽  
Bartosz Pałubicki

Shape stability of chosen thin wood based panels after heating. Lignocellulose board materials are commonly used for furniture construction. Typically, these are particle boards, fibreboard or plywood with thicknesses from 10 to 20 mm, however, some furniture elements are made of thin boards with a thickness of 3-4 mm (back walls, bottoms of drawers and others). Modern furniture uses built-in components that are a source of heat, such as lamps, power supplies, ovens. Local high temperature may negatively affect the shape stability of thin lignocellulose plates. The aim of the research described in this article was to determine the impact of shortterm exposure to high temperature on the dimensional stability of selected thin plate furniture materials. Four different HDF boards with nominal thicknesses of 3 mm and four different plywood boards with nominal thicknesses of 2 to 4 mm were tested. The test samples were subjected to a short-term exposure to temperatures of up to 250°C. As a result of the tests, it was found that HDF boards are characterized by a much higher shape stability at elevated temperature than boards made of plywood.

2020 ◽  
Vol 50 (4) ◽  
pp. 89-110
Author(s):  
Krzysztof Łęczycki ◽  
Sebastian Gronek

AbstractThe paper presented research results of the impact of short-term overheating of samples collected from the outer bearing ring suitable for the operation at elevated temperature installed in the turbine engine on the microstructure and hardness of the material. The samples were annealed at the following temperatures: 500, 600, 700, 800, 900 and 1000°C; and then cooled in still air. Microstructure examinations were conducted under metallographic microscope and transmission electron microscope.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2518
Author(s):  
Ariana Lammers ◽  
Anne H. Neerincx ◽  
Susanne J. H. Vijverberg ◽  
Cristina Longo ◽  
Nicole A. H. Janssen ◽  
...  

Environmental factors, such as air pollution, can affect the composition of exhaled breath, and should be well understood before biomarkers in exhaled breath can be used in clinical practice. Our objective was to investigate whether short-term exposures to air pollution can be detected in the exhaled breath profile of healthy adults. In this study, 20 healthy young adults were exposed 2–4 times to the ambient air near a major airport and two highways. Before and after each 5 h exposure, exhaled breath was analyzed using an electronic nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. The discrimination between pre and post-exposure was investigated with multilevel partial least square discriminant analysis (PLSDA), followed by linear discriminant and receiver operating characteristic (ROC) analysis, for all data (71 visits), and for a training (51 visits) and validation set (20 visits). Using all eNose measurements and the training set, discrimination between pre and post-exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76–0.89) and 0.84 (95% CI = 0.75–0.92), whereas it decreased to 0.66 (95% CI = 0.48–0.84) in the validation set. Short-term exposure to high levels of air pollution potentially influences the exhaled breath profiles of healthy adults, however, the effects may be minimal for regular daily exposures.


2005 ◽  
Vol 332 (1) ◽  
pp. 142-148 ◽  
Author(s):  
Anthony G. Passerini ◽  
Congzhu Shi ◽  
Nadeene M. Francesco ◽  
Peiying Chuan ◽  
Elisabetta Manduchi ◽  
...  

Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


2020 ◽  
Vol 21 (20) ◽  
pp. 7584
Author(s):  
David Sánchez Peñaranda ◽  
Christine Bäuerl ◽  
Ana Tomás-Vidal ◽  
Miguel Jover-Cerdá ◽  
Guillem Estruch ◽  
...  

The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1β (IL1-β), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2).


Author(s):  
Lewen Bi ◽  
Lanzhu Zhang

Bolted flange joints are widely used in petroleum, chemical, nuclear and power industries, etc. With more and more devices are used at high temperature, the performance of flange connections becomes more complex, especially with creep of different components in flange connection. At elevated temperature, with the loss of bolt force and gasket force due to creep, the joints are prone to leak. Based on this, this paper analyzed the relaxation of bolt force at elevated temperature due to creep of bolt, flange and gasket separately and simultaneously. Besides, the influence of different initial installation stress of bolts was also studied. The results showed bolted flange joints relaxed due to gasket creep during early short term service. However, contribution of bolt and flange creep became more and more significant with the extension of time. With considering the creep of bolt, flange and gasket simultaneously, 50% to 60% of the bolt material yield strength at room temperature was recommended as the bolt initial installation stress for the joint case studied in this paper.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 388 ◽  
Author(s):  
Isis Vega ◽  
Miroslav Nikolic ◽  
Sofía Pontigo ◽  
Karina Godoy ◽  
María de La Luz Mora ◽  
...  

Aluminum (Al) toxicity is one of the main growth and yield limiting factors for barley grown on acid soils. Silicon (Si) ameliorates Al toxicity as well as it promotes the phenolic compounds production that have antioxidant or structural role. We evaluated the time-dependent kinetics of Al and Si uptake and the impact of Si on the production of antioxidant- or structural- phenols in barley cultivars at the short-term. Two barley cultivars with contrasting Al tolerance (Hordeum vulgare ‘Sebastian’, Al tolerant; and H. vulgare ‘Scarlett’, Al sensitive), exposed to either −Al (0 mM) or +Al (0.2 mM) nutrient solutions without Si (−Si) or with 2 mM (+Si) were cultured for 48 h. Aluminum and Si concentration decreased in plants at all harvest times when Al and Si were simultaneously supplied; this effect was more noticeable in ‘Scarlett’. Nevertheless, Si influenced the antioxidant system of barley irrespective of the Al tolerance of the cultivar, decreasing oxidative damage and enhancing radical scavenging activity, the production of phenolic compounds, and lignin accumulation in barley with short-term exposure to Al.


Sign in / Sign up

Export Citation Format

Share Document