scholarly journals Identification of Escherichia coli strains in the vaginal cultures of healthy women and their patterns of antibiotic resistance.

2021 ◽  
Vol 15 (SUPPLEMENT 2) ◽  
pp. 1-6
Author(s):  
Jorge Angel Almeida Villegas ◽  
Harold Mondragon Reyes ◽  
Mariana Aguilar Sánchez ◽  
Maria Fernanda Cruz Rosas ◽  
Regina Sanchez Monroy ◽  
...  

Background: Bacterial vaginosis is the most common cause of vaginitis in women of childbearing age, and it predominantly affects young sexually active women. Escherichia coli is one of the most common bacteria found in the genital tract of non-pregnant (9–28%) and pregnant women (24–31%). E. coli strains can colonize the vaginal and endocervical regions in pregnant women, and may lead to the development of urinary tract, intra-amniotic or puerperal infections. Aim of the study: Isolation and identification of the antibiotic resistance patterns of extended spectrum beta-lactamase (ESBL)-producing and non-producing E. coli in the vaginal cultures of healthy women. Material and methods: Vaginal samples were taken from 55 healthy women. For the bacterial identification and resistance patterns, automated equipment from Beckman Coulter was used. Phenotypic techniques were used to confirm the presence or absence of ESBL. Results: Fifty-five cultures developed E. coli, with the rest of the strains corresponding to different bacteria. Of the 55 E. coli cultures, 35 (63.63%) were ESBL-producing and 20 (36.36%) did not produce ESBL. There was an 80% resistance to penicillin, and a 76.4% and 65.5% resistance to the first and fourth generation cephalosporins, respectively. A 45.5% resistance was observed for the fluoroquinolones, 52.7% for trimethoprim/ sulfamethoxazole, and 100% sensitivity to carbapenemics and amikacin. Conclusions: A large presence of vaginal ESBL-producing E. coli was observed in healthy women, which increases the risk of therapeutic failure due to high levels of antibiotic resistance.

Author(s):  
Kolsoum Rezaie Kahkhaie ◽  
Ashrafali Rezaie Kehkhaie ◽  
Leili Rezaie Kahkhaie ◽  
Maryam Koochakzai ◽  
Khadijeh Rezaie Keikhaie ◽  
...  

Background: In recent decades, extended spectrum beta-lactamase (ESBL) generating bacteria have increased universally. Among the most important causative agents of nosocomial infections throughout the world, Escherichia coli as main ESBL-producing bacteria are so highly regarded. Trends in the treatment of infections by such bacteria have led to a global concern.   Methods: All strains were cultured and identified by the Clinical Microbiology Laboratory and were recovered from blood and urine cultures. In-vitro presence of ESBL was confirmed with Clinical and Laboratory Standard Institute double disc and PCR for CTX-M1, CTM-M2, CTX-M3 method.   Results: The results of this study showed that Escherichia coli samples were resistant to AN (42.85%), GM (28.57%), AM (35.71%), AMC (35.71%), CZ (35.71%), and AZM (50%) antibiotics. While the most susceptible to antibiotic was ampicillin (64.28%), the least resistance to antibiotics was gentamicin.   Conclusion: The current situation of multiple bacterial antibiotic resistance has become a worrisome issue in UTI. Multi-drug-resistant E. coli can be readily encountered in hospital settings during daily clinical practice, and urologist should act timely. The management of such infections is extremely important for the future, with particular reference to prevention of new antibiotic resistance patterns.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mourouge Saadi Alwash ◽  
Hawraa Mohammed Al-Rafyai

Surface water contamination remains a major worldwide public health concern and may contribute to the dissemination of antibiotic-resistant bacteria. The Al-Hillah River in the city of Babylon Province, Iraq, diverts flows from the Euphrates River. Because of its importance in irrigation and population density, it faces several forced and unforced changes due to anthropogenic activities. To evaluate water quality, water samples were collected from three sites with different anthropogenic pressures along the Al-Hillah River. These samples were subjected to bacteriological analyses, i.e., total coliforms, Escherichia coli, and faecal enterococci. The phylogenetic groups of the E. coli isolates (n = 61) were typed by rapid PCR-based analyses. Representatives of each isolate were tested phenotypically for resistance to six classes of antibiotics and characterized according to their phylogenetic groups. The results demonstrated the highest resistance levels were to β-lactam antibiotics, followed by fosfomycin and aminoglycosides. Escherichia coli isolates belonging to phylogenetic groups A and B2 were the most common and were characterized by a higher prevalence of antibiotic resistance. This study is important for understanding the current conditions of the Al-Hillah River, as the data reveal a high prevalence of multiresistance among E. coli isolates circulating at the three sampling sites.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


Author(s):  
O. C. Adekunle ◽  
A. J. Falade- Fatila ◽  
R. Ojedele ◽  
G. Odewale

The emerging drug resistance, especially among the Escherichia coli (E.coli) isolates from pregnant women, spread rapidly within the community. Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in pregnant women. Also, multi-drug resistance is becoming rampant, and it is of serious public health concern. Treatment of E. coli is now a challenge due to continuous increase in resistance towards commonly prescribed antibiotics, thus posing a threat to treatment. Hence, the aim of the study is to determine antibiotic resistance genes in some multiple antibiotic resistant E.coli from apparently healthy pregnant women in Osun State. A cross-sectional study design was used to collect 150 mid-stream urine samples from apparently healthy pregnant women from March, 2018 to September, 2018. A well structured questionnaire and informed consent were used for data collection. Standard loop technique was used to place 0.001 ml of urine on Cysteine Lactose Electrolyte Deficient (CLED) medium, Blood agar, MacConkey agar and incubated at 37 °C for 24 h. A standard agar disc diffusion method was used to determine antimicrobial susceptibility pattern of the isolates. The molecular detection of the resistant genes was done using PCR techniques. The ages of women enrolled in this study ranges from 22 to 42 years (mean ± standard deviation = 31 ± 4.7 years). Escherichia coli showed high percentage of resistance to ampicillin and low resistance to ciprofloxacin and penicillin. All the E. coli isolates were sensitive to levofloxacin, and most were resistant to Meropenem. Multiple drug resistance was observed in all the isolates. Resistance genes in VIM 390bp, bla ctx-M 585bp and TEM 517bp were detected in some of the representative E. coli isolates profiled. This study identified the presence of Multi-drug resistance genes in E. coli associated UTI among pregnant women in Osogbo.


2015 ◽  
Vol 9 (07) ◽  
pp. 720-724 ◽  
Author(s):  
Mandira Mukherjee ◽  
Snehashis Koley ◽  
Sandip Kumar Mukherjee ◽  
Shreya Basu ◽  
Biplab Ghosh ◽  
...  

Introduction: Asymptomatic bacteriuria (ABU) in pregnancy generates medical complications. E. coli is the common etiologic agent responsible for ABU-associated infections. This study aimed to identify the phylogenetic background and drug resistance in asymptomatic E. coli from a pregnant population. Methodology: E. coli was confirmed biochemically from culture-positive urine samples collected from asymptomatic pregnant women. Phylogenetic typing was done by polymerase chain reaction (PCR). The isolates were subjected to antibiotic susceptibility testing and extended-spectrum beta-lactamase (ESBL) production. Statistical significance was determined using SPSS 17.0 software. Results: Bacteriuria was observed in 113 (22.6%) of 500 asymptomatic pregnant females. E. coli was reported in 44 (38.9%) of 113 isolates. The mean age-wise distribution was 25.14 ± 4.63. Although pathogenic phylogroup B2 was predominant (54.5%), incidence of non-pathogenic phylogroup B1 (27.3%) was found to be statistically significant (p ≤ 0.001), and B1 and B2 were correlated with respect to total ABU population. Antibiotic sensitivity against ampicillin (34.1%), ceftazidime (50%), cefotaxime (47.7%), ciprofloxacin (47.7%), amikacin (86.4%), nitrofurantion (79.5%), and co-trimoxazole (36.4%) was observed. Multidrug resistance (MDR) and ESBL production was reported in 26 (59.1%) of 44 and 18 (69.2%) of the 26 MDR isolates, respectively. A significant distribution of phylogroup B1 (p = 0.03) with drug resistance was also observed. Conclusions: This is the first study that reported significant incidence of non-pathogenic phylogroup B1 in asymptomatic E. coli with high incidence of MDR isolated from pregnant women in Kolkata, India.  These varied resistance patterns present major therapeutic and infection control challenges during pregnancy.


2021 ◽  
Author(s):  
A.S. Post ◽  
I. Guiraud ◽  
M. Peeters ◽  
P. Lompo ◽  
S. Ombelet ◽  
...  

Abstract Introduction: In low- and middle-income countries, surveillance of antimicrobial resistance (AMR) is mostly hospital-based and, in view of poor access to clinical microbiology, biased to more resistant pathogens. We assessed AMR among Escherichia coli isolates obtained from urine cultures of pregnant women as an indicator for community AMR and compared the AMR results with those from E. coli isolates obtained from febrile patients in previously published clinical surveillance studies conducted within the same population in Nanoro, rural Burkina Faso.Results: Between October 2016 – September 2018, midstream urine samples collected as part of routine antenatal in Nanoro district were cultured by a dipslide method and screened for antibiotic residues. Among 6018 consenting women (median (IQR) age 25 (20 - 30)), 84 (1.4%) were excluded because of symptoms of urinary tract infection and 96 (1.6%) screened positive for antibiotic residues. Significant growth - defined as a monoculture of Enterobacterales at counts of ≥ 104 colony forming units/ml – was observed in 202 (3.4%) cultures; E. coli represented 155 (76.7%) of isolates. Among these E. coli isolates, resistance rates to ampicillin, cotrimoxazole and ciprofloxacin were respectively 65.8%, 64.4% 16.2%, compared to 89.5%, 89.5% and 62.5% among E. coli from historical clinical isolates (n = 48 of which 45 from blood cultures). Proportions of extended spectrum beta-lactamase producers and multidrug resistance were 3.2% and 5.2% among E. coli isolates from urine in pregnant women versus 35.4%, and 60.4% respectively among clinical isolates. Adding urine culture to the routine urine analysis (protein and glucose) of antenatal was feasible. The dipslide culture method was affordable and user-friendly and allowed on-site inoculation and easy transport; challenges were contamination (midstream urine sampling) and the semi-quantitative reading. Conclusions: The E. coli isolates obtained from healthy pregnant women had significantly lower AMR rates compared to clinical E. coli isolates, probably reflecting the lower antibiotic pressure in the pregnant women population. Provided confirmation of the present findings in other settings, E. coli from urine samples in pregnant women may be a potential indicator for benchmarking, comparing, and monitoring community AMR rates across populations over different countries and regions.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 161 ◽  
Author(s):  
Saskia-Camille Flament-Simon ◽  
Marie-Hélène Nicolas-Chanoine ◽  
Vanesa García ◽  
Marion Duprilot ◽  
Noémie Mayer ◽  
...  

Escherichia coli is the main pathogen responsible for extraintestinal infections. A total of 196 clinical E. coli consecutively isolated during 2016 in Spain (100 from Lucus Augusti hospital in Lugo) and France (96 from Beaujon hospital in Clichy) were characterized. Phylogroups, clonotypes, sequence types (STs), O:H serotypes, virulence factor (VF)-encoding genes and antibiotic resistance were determined. Approximately 10% of the infections were caused by ST131 isolates in both hospitals and approximately 60% of these infections were caused by isolates belonging to only 10 STs (ST10, ST12, ST58, ST69, ST73, ST88, ST95, ST127, ST131, ST141). ST88 isolates were frequent, especially in Spain, while ST141 isolates significantly predominated in France. The 23 ST131 isolates displayed four clonotypes: CH40-30, CH40-41, CH40-22 and CH40-298. Only 13 (6.6%) isolates were carriers of extended-spectrum beta-lactamase (ESBL) enzymes. However, 37.2% of the isolates were multidrug-resistant (MDR). Approximately 40% of the MDR isolates belonged to only four of the dominant clones (B2-CH40-30-ST131, B2-CH40-41-ST131, C-CH4-39-ST88 and D-CH35-27-ST69). Among the remaining MDR isolates, two isolates belonged to B2-CH14-64-ST1193, i.e., the new global emergent MDR clone. Moreover, a hybrid extraintestinal pathogenic E.coli (ExPEC)/enteroaggregative isolate belonging to the A-CH11-54-ST10 clone was identified.


Microbiology ◽  
2010 ◽  
Vol 156 (7) ◽  
pp. 2124-2135 ◽  
Author(s):  
William R. Schwan ◽  
Adam Briska ◽  
Buffy Stahl ◽  
Trevor K. Wagner ◽  
Emily Zentz ◽  
...  

Optical maps were generated for 33 uropathogenic Escherichia coli (UPEC) isolates. For individual genomes, the NcoI restriction fragments aligned into a unique chromosome map for each individual isolate, which was then compared with the in silico restriction maps of all of the sequenced E. coli and Shigella strains. All of the UPEC isolates clustered separately from the Shigella strains as well as the laboratory and enterohaemorrhagic E. coli strains. Moreover, the individual strains appeared to cluster into distinct subgroups based on the dendrogram analyses. Phylogenetic grouping of these 33 strains showed that 32/33 were the B2 subgroup and 1/33 was subgroup A. To further characterize the similarities and differences among the 33 isolates, pathogenicity island (PAI), haemolysin and virulence gene comparisons were performed. A strong correlation was observed between individual subgroups and virulence factor genes as well as haemolysis activity. Furthermore, there was considerable conservation of sequenced-strain PAIs in the specific subgroups. Strains with different antibiotic-resistance patterns also appeared to sort into separate subgroups. Thus, the optical maps distinguished the UPEC strains from other E. coli strains and further subdivided the strains into distinct subgroups. This optical mapping procedure holds promise as an alternative way to subgroup all E. coli strains, including those involved in infections outside of the intestinal tract and epidemic strains with distinct patterns of antibiotic resistance.


2007 ◽  
Vol 73 (17) ◽  
pp. 5486-5493 ◽  
Author(s):  
Patrick Duriez ◽  
Edward Topp

ABSTRACT Many confined-livestock farms store their wastes for several months prior to use as a fertilizer. Storing manure for extended periods could significantly bias the composition of enteric bacterial populations subsequently released into the environment. Here, we compared populations of Escherichia coli isolated from fresh feces and from the manure-holding tank (stored manure) of a commercial swine farm, each sampled monthly for 6 months. The 4,668 confirmed E. coli isolates were evaluated for resistance to amikacin, ampicillin, cephalothin, chloramphenicol, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline, trimethoprim, and trimethoprim plus sulfamethoxazole. A subset of 1,687 isolates was fingerprinted by repetitive extragenic palindromic PCR (rep-PCR) with the BOXA1R primer to evaluate the diversity and the population structure of the collection. The population in the stored manure was generally more diverse than that in the fresh feces. Half of the genotypes detected in the stored manure were never detected in the fresh fecal material, and only 16% were detected only in the fresh feces. But the majority of the isolates (84%) were assigned to the 34% of genotypes shared between the two environments. The structure of the E. coli population showed important monthly variations both in the extent and distribution of the diversity of the observed genotypes. The frequency of detection of resistance to specific antibiotics was not significantly different between the two collections and varied importantly between monthly samples. Resistance to multiple antibiotics was much more temporally dynamic in the fresh feces than in the stored manure. There was no relationship between the distribution of rep-PCR fingerprints and the distribution of antibiotic resistance profiles, suggesting that specific antibiotic resistance determinants were dynamically distributed within the population.


Sign in / Sign up

Export Citation Format

Share Document