scholarly journals Escherichia Coli From Urine Samples of Pregnant Women as an Indicator for Antimicrobial Resistance in the Community: a Field Study From Rural Burkina Faso.

Author(s):  
A.S. Post ◽  
I. Guiraud ◽  
M. Peeters ◽  
P. Lompo ◽  
S. Ombelet ◽  
...  

Abstract Introduction: In low- and middle-income countries, surveillance of antimicrobial resistance (AMR) is mostly hospital-based and, in view of poor access to clinical microbiology, biased to more resistant pathogens. We assessed AMR among Escherichia coli isolates obtained from urine cultures of pregnant women as an indicator for community AMR and compared the AMR results with those from E. coli isolates obtained from febrile patients in previously published clinical surveillance studies conducted within the same population in Nanoro, rural Burkina Faso.Results: Between October 2016 – September 2018, midstream urine samples collected as part of routine antenatal in Nanoro district were cultured by a dipslide method and screened for antibiotic residues. Among 6018 consenting women (median (IQR) age 25 (20 - 30)), 84 (1.4%) were excluded because of symptoms of urinary tract infection and 96 (1.6%) screened positive for antibiotic residues. Significant growth - defined as a monoculture of Enterobacterales at counts of ≥ 104 colony forming units/ml – was observed in 202 (3.4%) cultures; E. coli represented 155 (76.7%) of isolates. Among these E. coli isolates, resistance rates to ampicillin, cotrimoxazole and ciprofloxacin were respectively 65.8%, 64.4% 16.2%, compared to 89.5%, 89.5% and 62.5% among E. coli from historical clinical isolates (n = 48 of which 45 from blood cultures). Proportions of extended spectrum beta-lactamase producers and multidrug resistance were 3.2% and 5.2% among E. coli isolates from urine in pregnant women versus 35.4%, and 60.4% respectively among clinical isolates. Adding urine culture to the routine urine analysis (protein and glucose) of antenatal was feasible. The dipslide culture method was affordable and user-friendly and allowed on-site inoculation and easy transport; challenges were contamination (midstream urine sampling) and the semi-quantitative reading. Conclusions: The E. coli isolates obtained from healthy pregnant women had significantly lower AMR rates compared to clinical E. coli isolates, probably reflecting the lower antibiotic pressure in the pregnant women population. Provided confirmation of the present findings in other settings, E. coli from urine samples in pregnant women may be a potential indicator for benchmarking, comparing, and monitoring community AMR rates across populations over different countries and regions.

2021 ◽  
Vol 6 (2) ◽  
pp. 105
Author(s):  
Regina Ama Banu ◽  
Jorge Matheu Alvarez ◽  
Anthony J. Reid ◽  
Wendemagegn Enbiale ◽  
Appiah-Korang Labi ◽  
...  

Infections by Extended-Spectrum Beta-Lactamase producing Escherichia coli (ESBL-Ec) are on the increase in Ghana, but the level of environmental contamination with this organism, which may contribute to growing Antimicrobial Resistance (AMR), is unknown. Using the WHO OneHealth Tricycle Protocol, we investigated the contamination of E. coli (Ec) and ESBL-Ec in two rivers in Ghana (Odaw in Accra and Okurudu in Kasoa) that receive effluents from human and animal wastewater hotspots over a 12-month period. Concentrations of Ec, ESBL-Ec and percent ESBL-Ec/Ec were determined per 100 mL sample. Of 96 samples, 94 (98%) were positive for ESBL-Ec. concentrations per 100 mL (MCs100) of ESBL-Ec and %ESBL-Ec from both rivers were 4.2 × 104 (IQR, 3.1 × 103–2.3 × 105) and 2.79 (IQR, 0.96–6.03), respectively. MCs100 were significantly lower in upstream waters: 1.8 × 104 (IQR, 9.0 × 103–3.9 × 104) as compared to downstream waters: 1.9 × 106 (IQR, 3.7 × 105–5.4 × 106). Both human and animal wastewater effluents contributed to the increased contamination downstream. This study revealed high levels of ESBL-Ec in rivers flowing through two cities in Ghana. There is a need to manage the sources of contamination as they may contribute to the acquisition and spread of ESBL-Ec in humans and animals, thereby contributing to AMR.


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


2021 ◽  
Vol 11 (3) ◽  
pp. 650-658
Author(s):  
Mohammed Yahia Alasmary

Background: To explore the prevalence of urinary tract infections (UTIs) among female patients in the Najran region of Saudi Arabia and determine their antimicrobial resistance pattern. Methods: This study was conducted on 136 urine samples collected from outpatient departments (OPDs) of the different government hospitals in the Najran region of Saudi Arabia. Over one year, the results of susceptibility testing reports of outpatient midstream urine samples from three government hospitals were prospectively evaluated. Results: Of 136 urine samples, only 123 (90.45%) were found to show significant growth for UTIs, from which 23 different uropathogens were identified. Escherichia coli (58.5%) was the most commonly isolated organism, followed by Klebsiella pneumoniae (8.1%). The isolated microorganism showed increased resistance patterns from 3.3% to 62.6%, with an overall resistance of 27.19%. Meropenem was the most effective antimicrobial, followed by amikacin and ertapenem (0.47%, 0.91%, and 1.5% resistance, respectively). At the same time, ampicillin and cephazolin were the least (62.6% and 59.5% resistance, respectively) effective. Overall, eleven (8.94%) uropathogens isolates were ESBLs, among which there were eight (6.5%) Escherichia coli, one (0.81%) Klebsiella pneumoniae, one (0.81%) Klebsiella oxytoca, and one (0.81%) Citrobacter amalonaticus. Conclusions: E. coli remains the most commonly isolated causative uropathogens, followed by Klebsiella species. The prevalence of pathogenic E. coli and Klebsiella species underscores the importance of developing cost-effective, precise, and rapid identification systems to minimize public exposure to uropathogens. Antibiotic susceptibility data revealed that most of the isolates were resistant to the majority of the antibiotics. The patients with UTIs in the Najran region of Saudi Arabia are at a high risk of antibiotic resistance, leading to significant problems in outpatient department (OPD) treatment outcomes and raising the alarm for the physician to change their empiric treatment.


2020 ◽  
Vol 8 (10) ◽  
pp. 1626
Author(s):  
Mahfouz Nasser ◽  
Snehal Palwe ◽  
Ram Naresh Bhargava ◽  
Marc G. J. Feuilloley ◽  
Arun S. Kharat

The production of diverse and extended spectrum β-lactamases among Escherichia coli and ESKAPE pathogens is a growing threat to clinicians and public health. We aim to provide a comprehensive analysis of evolving trends of antimicrobial resistance and β-lactamases among E. coli and ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine to bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) in the Arabian region. A systematic review was conducted in Medline PubMed on papers published between January 2000 and February 2020 on countries in the Arab region showing different antibiotic resistance among E. coli and ESKAPE pathogens. A total of n = 119,144 clinical isolates were evaluated for antimicrobial resistance in 19 Arab countries. Among these clinical isolates, 74,039 belonged to E. coli and ESKAPE pathogen. Distribution of antibiotic resistance among E. coli and ESKAPE pathogens indicated that E. coli (n = 32,038) was the predominant pathogen followed by K. pneumoniae (n = 17,128), P. aeruginosa (n = 11,074), methicillin-resistant S. aureus (MRSA, n = 4370), A. baumannii (n = 3485) and Enterobacter spp. (n = 1574). There were no reports demonstrating Enterococcus faecium producing β-lactamase. Analyses revealed 19 out of 22 countries reported occurrence of ESBL (Extended-Spectrum β-Lactamase) producing E. coli and ESKAPE pathogens. The present study showed significantly increased resistance rates to various antimicrobial agents over the last 20 years; for instance, cephalosporin resistance increased from 37 to 89.5%, fluoroquinolones from 46.8 to 70.3%, aminoglycosides from 40.2 to 64.4%, mono-bactams from 30.6 to 73.6% and carbapenems from 30.5 to 64.4%. An average of 36.9% of the total isolates were reported to have ESBL phenotype during 2000 to 2020. Molecular analyses showed that among ESBLs and Class A and Class D β-lactamases, blaCTX-M and blaOXA have higher prevalence rates of 57% and 52.7%, respectively. Among Class B β-lactamases, few incidences of blaVIM 27.7% and blaNDM 26.3% were encountered in the Arab region. Conclusion: This review highlights a significant increase in resistance to various classes of antibiotics, including cephalosporins, β-lactam and β-lactamase inhibitor combinations, carbapenems, aminoglycosides and quinolones among E. coli and ESKAPE pathogens in the Arab region.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S697-S697
Author(s):  
Andrew Walkty ◽  
James Karlowsky ◽  
Philippe Lagace-Wiens ◽  
Alyssa Golden ◽  
Melanie Baxter ◽  
...  

Abstract Background The clinical outcome of patients with bacteremia due to an extended-spectrum beta-lactamase (ESBL)-producing member of the family Enterobacteriaceae who are treated with piperacillin-tazobactam appears to depend, at least in part, on the piperacillin-tazobactam MIC. The purpose of this study was to determine whether there is any association between the MIC of piperacillin-tazobactam and presence of the narrow spectrum OXA-1 beta-lactamase enzyme among ESBL-producing Escherichia coli. Methods E. coli clinical isolates were obtained from patients evaluated at hospitals across Canada (January 2007 to December 2018) as part of an ongoing national surveillance study (CANWARD). ESBL production was confirmed using the Clinical and Laboratory Standards Institute phenotypic method. Susceptibility testing was carried out using custom broth microdilution panels, and all isolates underwent whole genome sequencing for beta-lactamase gene detection. Results In total, 671 ESBL-producing E. coli were identified as part of the CANWARD study. The majority of isolates (92.0%; 617/671) harbored a CTX-M ESBL enzyme. CTX-M-15 (62.3%; 418/671), CTX-M-27 (13.9%; 93/671), and CTX-M-14 (13.4%; 90/671) were the most common variants identified. The narrow spectrum OXA-1 beta-lactamase enzyme was present in 42.6% (286/671) of isolates. OXA-1 was detected in 66.3% (277/418) of isolates with a CTX-M-15 ESBL enzyme versus only 3.6% (9/253) of isolates with other ESBL enzyme types. The piperacillin-tazobactam MIC50 and MIC90 values were 8 µg/mL and 32 µg/mL for isolates that possessed the OXA-1 enzyme versus 2 μg/mL and 8 µg/mL for those that did not. The percentage of ESBL-producing E. coli isolates that were inhibited by a piperacillin-tazobactam MIC of ≤8 μg/mL was 68.5% for isolates that were OXA-1 positive and 93.8% for isolates that were OXA-1 negative. Conclusion The MIC50 and MIC90 values of piperacillin-tazobactam among ESBL-producing E. coli were higher for the subset of isolates that harbored a narrow spectrum OXA-1 beta-lactamase enzyme relative to the subset that did not. This association was primarily observed among ESBL-producers with the CTX-M-15 enzyme variant. OXA-1 was infrequently detected among isolates with other ESBL enzyme types. Disclosures George Zhanel, PhD, AVIR (Grant/Research Support)Iterum (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support)Sandoz (Grant/Research Support)Sunovion (Grant/Research Support)Venatorx (Grant/Research Support)Verity (Grant/Research Support)


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Gang Liu ◽  
Laidi Ding ◽  
Bo Han ◽  
Sofie Piepers ◽  
S. Ali Naqvi ◽  
...  

Escherichia coliis a major udder pathogen causing clinical mastitis in dairy cattle and its heat stable endotoxin in powdered infant formula milk is a potential risk factor in neonatal infections. Cephalosporins are frequently used for treatment of mastitis caused by mastitis; however, use of these antimicrobials may induce antimicrobial resistance inE. coli. The objective of this study was to explore thein vitroeffect of subminimum inhibitory concentrations (sub-MIC) of cefalotin (CF) and ceftazidime (CAZ) on the morphology, antimicrobial resistance, and endotoxin releasing characteristics of 3E. coliisolates recovered from bovine clinical mastitis. The parentE. coliisolates, which were susceptible to CF and CAZ, were exposed to CF or CAZ separately at sub-MIC levels to produce 9 generations of induced isolates. Colonies of the CAZ-induced isolates from all 3 parentE. coliwere smaller on blood agar and the bacteria became filamentous, whereas the CF-induced isolates did not demonstrate prominent morphological changes. After induction by CF or CAZ, many induced isolates showed resistance to cefoxitin, CAZ, CF, kanamycin, ampicillin, and amoxicillin/clavulanic acid while their parent isolates were susceptible to these antimicrobials. Notably, 5 CAZ-induced isolates from the same parent isolate were found to produce extended-spectrum beta-lactamase (ESBL) though none of the tested ESBL related genes could be detected. All CAZ-induced isolates released more endotoxin with a higher release rate, whereas endotoxin release of CF-inducedE. coliisolates was not different from parent isolates. The exposure of cephalosporins at sub-MIC levels induced resistantEscherichia coli.We inferred that cephalosporins, especially CAZ, should be used prudently for treatment of clinicalE. colimastitis.


Author(s):  
M.M. Costa ◽  
G. Drescher ◽  
F Maboni ◽  
S.S. Weber ◽  
A. Schrank ◽  
...  

Virulence factors and antimicrobial resistance patterns of Escherichia coli isolates were evaluated. A total of 80 E. coli isolates were evaluated, being 64 from clinical samples (intestinal content and fragments of organs from diarrheic piglets), seven from feces of clinically healthy piglets and sows, and nine environmental samples (five from facilities, two from feed, one from insect, and one from waste). Molecular characterization was performed by PCR detection of fimbriae and toxin genes and plasmid content determination. The isolates were also characterized according to their resistance or sensitivity to the following drugs: ampicillin, trimethoprim:sulfamethoxazole, tetracycline, amikacine, colistin, norfloxacin, florfenicol, enrofloxacin, cefalexin, trimethoprim, neomycin, chloramphenicol, and gentamicin. From 80 E. coli isolates, 53.8% were classified as enterotoxigenic E. coli (ETEC), 2.5% were shiga toxin-producing E. coli (STEC), and 43.8% showed a non specific pattern and were unclassified. One fecal isolate from non-diarrheic piglet was classified as ETEC by PCR. Clinical isolates showed resistance mainly for tetracycline and trimethoprim:sulfamethoxazole. Plasmidial DNA was observed in 70 isolates, being 78.5% of clinical isolates, 8.57% of non-diarrheic feces, and 12.8% of environment.


2012 ◽  
Vol 56 (4) ◽  
pp. 2181-2183 ◽  
Author(s):  
Guillermo V. Sanchez ◽  
Ronald N. Master ◽  
James A. Karlowsky ◽  
Jose M. Bordon

ABSTRACTThis study examinesin vitroantimicrobial resistance data fromEscherichia coliisolates obtained from urine samples of U.S. outpatients between 2000 and 2010 using The Surveillance Network (TSN). Antimicrobial susceptibility results (n= 12,253,679) showed the greatest increases inE. coliresistance from 2000 to 2010 for ciprofloxacin (3% to 17.1%) and trimethoprim-sulfamethoxazole (TMP-SMX) (17.9% to 24.2%), whereas nitrofurantoin (0.8% to 1.6%) and ceftriaxone (0.2% to 2.3%) showed minimal change. From 2000 to 2010, the antimicrobial resistance of urinaryE. coliisolates to ciprofloxacin and TMP-SMX among outpatients increased substantially.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Amirhossein Yousefi ◽  
Saam Torkan

Resistant uropathogenic Escherichia coli is the most common cause of urinary tract infections in dogs. The present research was done to study the prevalence rate and antimicrobial resistance properties of UPEC strains isolated from healthy dogs and those which suffered from UTIs. Four-hundred and fifty urine samples were collected and cultured. E. coli-positive strains were subjected to disk diffusion and PCR methods. Two-hundred out of 450 urine samples (44.4%) were positive for E. coli. Prevalence of E. coli in healthy and infected dogs was 28% and 65%, respectively. Female had the higher prevalence of E. coli (P=0.039). Marked seasonality was also observed (P=0.024). UPEC strains had the highest levels of resistance against gentamicin (95%), ampicillin (85%), amikacin (70%), amoxicillin (65%), and sulfamethoxazole-trimethoprim (65%). We found that 21.50% of UPEC strains had simultaneously resistance against more than 10 antibiotics. Aac(3)-IV (77%), CITM (52.5%), tetA (46.5%), and sul1 (40%) were the most commonly detected antibiotic resistance genes. Findings showed considerable levels of antimicrobial resistance among UPEC strains of Iranian dogs. Rapid identification of infected dogs and their treatment based on the results of disk diffusion can control the risk of UPEC strains.


Author(s):  
Misheck Shawa ◽  
Yoshikazu Furuta ◽  
Gillan Mulenga ◽  
Maron Mubanga ◽  
Evans Mulenga ◽  
...  

Abstract Background The epidemiology of extended-spectrum β-lactamases (ESBLs) has undergone dramatic changes, with CTX-M-type enzymes prevailing over other types. blaCTX-M genes, encoding CTX-M-type ESBLs, are usually found on plasmids, but chromosomal location is becoming common. Given that blaCTX-M-harboring strains often exhibit multidrug resistance (MDR), it is important to investigate the association between chromosomally integrated blaCTX-M and the presence of additional antimicrobial resistance (AMR) genes, and to identify other relevant genetic elements. Methods A total of 46 clinical isolates of cefotaxime-resistant Enterobacteriaceae (1 Enterobacter cloacae, 9 Klebsiella pneumoniae, and 36 Escherichia coli) from Zambia were subjected to whole-genome sequencing (WGS) using MiSeq and MinION. By reconstructing nearly complete genomes, blaCTX-M genes were categorized as either chromosomal or plasmid-borne. Results WGS-based genotyping identified 58 AMR genes, including four blaCTX-M alleles (i.e., blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55). Hierarchical clustering using selected phenotypic and genotypic characteristics suggested clonal dissemination of blaCTX-M genes. Out of 45 blaCTX-M gene-carrying strains, 7 harbored the gene in their chromosome. In one E. cloacae and three E. coli strains, chromosomal blaCTX-M-15 was located on insertions longer than 10 kb. These insertions were bounded by ISEcp1 at one end, exhibited a high degree of nucleotide sequence homology with previously reported plasmids, and carried multiple AMR genes that corresponded with phenotypic AMR profiles. Conclusion Our study revealed the co-occurrence of ISEcp1-blaCTX-M-15 and multiple AMR genes on chromosomal insertions in E. cloacae and E. coli, suggesting that ISEcp1 may be responsible for the transposition of diverse AMR genes from plasmids to chromosomes. Stable retention of such insertions in chromosomes may facilitate the successful propagation of MDR clones among these Enterobacteriaceae species.


Sign in / Sign up

Export Citation Format

Share Document