Finite element analysis of the impact of the properties of dental wedge materials on functional features

2021 ◽  
Vol 112 (1) ◽  
pp. 32-41
Author(s):  
M. Czerwiński ◽  
J. Żmudzki ◽  
K. Kwieciński ◽  
M. Kowalczyk

Purpose: Defect of the interproximal wall of the tooth is filled with use the shaped matrix and wedge which seals bottom margin during filling. Better fit of the wedge and equalization of the pressure forces on the matrix is achieved by the compliance of the wedge structure through cuts and perforations and the use of silicone materials and unidirectionally expanded polytetrafluoroethylene (ePTFE). The work presents a methodology for model studies of the mechanics of dental wedges in order to evaluate and compare the impact of wedge materials on functional features. The hypothesis of the work was that the mechanical properties of ePTFE determine the effectiveness of the dental wedge. Design/methodology/approach: Effect of modulus of elasticity and friction coefficient of wedge and matrix materials on the functional features of the wedge was studied on the way Finite Element Analysis (FEA). Simulation included contact sliding between wedge and matrix what was simulated in nonlinear large displacements regime. The sealing evaluation criterion was the pressure distribution between the wedge and matrix below the lower edge of the defect. Displacement values were the criterion for the loss of convexity as a result of matrix deformation. Findings: The material for the wedge should be characterized by a low coefficient of friction, low elasticity (ensuring high compliance of the wedge) and at the same time the ability to large permanent deformations, which allows for plastic shaping of the matrix from the side of the defect in order to achieve the required wall convexity and the tangent point. Research limitations/implications: Results show tendency of phenomena in limitation to model simplification of the interdental gap and the ideal adhesion of the matrix to the tooth and linear elasticity of materials. Practical implications: The material that best meets the requirements is unidirectionally expanded polytetrafluoroethylene, which has one of the lowest coefficients of friction and very high plasticity necessary to shape the matrix from the inside of the cavity. Originality/value: Methodology of model study and criteria of functional characteristics of dental wedge was presented.

Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.


2021 ◽  
Author(s):  
Guodong Zhu ◽  
Dawei Gao

Energy efficiency and leakage magnetic field (LMF) are two important issues in inductive chargers. In this work, the maximum achievable coil efficiency and the corresponding LMF strength are formulated as functions of system parameters, and figure of merits (FOM) are proposed for assessing the efficiency and LMF performance of the coil assemblies. The target application is electric vehicle inductive chargers where the LMF is suppressed via passive shielding. The impact of the coil assembly’s geometric parameters on both FOMs is examined through a combination of finite element analysis (FEA) simulation and magnetic circuit analysis, and measures to improve the FOMs are studied Optimization of an exemplary coil assembly within given dimensional limits is conducted and the performance improvement is verified by FEA simulation results. <br>


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Se-Chang Kim ◽  
Dae-Geun Cho ◽  
Tae-Gyu Kim ◽  
Se-Hun Jung ◽  
Ja-Choon Koo ◽  
...  

Failures in IT electronics are often caused by falling or external shocks during transportation. These failures cause customers to mistrust the reliability of the products. Many manufacturers of IT electronics have not only used cushioning materials but also increased the shock resistance of their products for failure prevention. Especially in case of printer products, the design of the packaging and the product robustness are extremely important because of their substantial weight and the fragility of the internal modules. For product design, it is essential to understand the impact failure mechanism of the products. In this study, a compression test, a drop impact test, and a finite element analysis (FEA) were performed to analyze the dynamic behaviors of a packaged multifunction printer (MFP). The mechanical properties of a cushioning material were measured by compression tests. The FE models of the cushion packaging and the MFP included the physical characteristics of the internal modules, and their dynamic behaviors were obtained using the commercial software ls-dyna3d. Simulation results were also compared with drop test results to verify the proposed FE models. The shock resistance of the MFP was assessed by stress analysis and strength evaluation. We also expect our FE models will be useful for evaluating the fragility of the internal modules because the models can numerically estimate the shock acceleration profiles of the internal modules, which are difficult to measure experimentally.


2014 ◽  
Vol 60 (3) ◽  
pp. 323-334 ◽  
Author(s):  
G. Leonardi

Abstract The paper presents a numerical study of an aircraft wheel impacting on a flexible landing surface. The proposed 3D model simulates the behaviour of flexible runway pavement during the landing phase. This model was implemented in a finite element code in order to investigate the impact of repeated cycles of loads on pavement response. In the model, a multi-layer pavement structure was considered. In addition, the asphalt layer (HMA) was assumed to follow a viscoelastoplastic behaviour. The results demonstrate the capability of the model in predicting the permanent deformation distribution in the asphalt layer.


2016 ◽  
Vol 87 (16) ◽  
pp. 1938-1952 ◽  
Author(s):  
Chao Zhi ◽  
Hairu Long ◽  
Fengxin Sun

The aim of this research was to investigate the low-velocity impact properties of syntactic foam reinforced by warp-knitted spacer fabric (SF-WKSF). In order to discuss the effect of warp-knitted spacer fabric (WKSF) and hollow glass microballoon parameters on the impact performance of composites, eight different kinds of SF-WKSF samples were fabricated, including different WKSF surface layer structures, different spacer yarn diameters and inclination-angles, different microballoon types and contents. The low-velocity impact tests were carried out on an INSTRON 9250 HV drop-weight impact tester and the impact resistances of SF-WKSF were analyzed; it is indicated that most SF-WKSF specimens show higher peak impact force and major damage energy compared to neat syntactic foam. The results also demonstrate that the surface layer structure, inclination-angle of the spacer yarn and the volume fraction and type of microballoon have a significant influence on the low-impact performance of SF-WKSF. In addition, a finite element analysis finished with ANSYS/LS-DYNA and LS-PrePost was used to simulate the impact behaviors of SF-WKSF. The results of the finite element analysis are in agreement with the experimental results.


Author(s):  
Hui Tang ◽  
Yangmin Li ◽  
Jiming Huang

This article presents a novel design of a flexure-based, piezoelectric actuated, completely decoupled, high-bandwidth, highresolution, and large stroke parallel XY micromanipulator with two amplification levers. The monolithic mechanism is featured with dual working modes, which meets different kinds of requirements in terms of high resolution and large workspace in micro/nano fields. In order to reduce the displacement loss, the modeling and analysis of bending motion of the levers are conducted; thereafter, compliance and stiffness modeling by employing the matrix method are established. Furthermore, the dynamics modeling and analysis via Lagrange equations are performed to improve the dynamic properties of the mechanism. The simulation results of finite element analysis indicate that the cross-coupling between the two axes is kept to 1.2%; meanwhile, the natural frequency of the mechanism is about 700 Hz, and the amplifier ratio is approximately 2.32. Both theoretical analysis and finite element analysis results well validate the performance of the proposed mechanism.


2012 ◽  
Vol 568 ◽  
pp. 311-314
Author(s):  
Jun Tian ◽  
Shou Yan Zhong ◽  
Zi Qiong Shi

By Computer finite element analysis, the impact of the interface thickness, the interface module and the short fiber orientation of Al2O3-SiO2(sf)/AZ91D composite on the maximum fiber axial stress and the steady creep rate is studied. Maximum axial stress of the short fiber is in the fiber center, and the axial stress gradually decreases along the direction of the fiber length. When the external stress is constant, the maximum fiber axial stress increases with decreasing of the thickness of the interface, and the steady creep rate increases with the increasing of thickness of the interface. The maximum fiber axial stress increases with the increasing of the interface modulus, the increasing of the interface module improves the load transfer and the creep resistance. Finite element simulation results and experimental results can be well matched to better explain the creep behavior.


Sign in / Sign up

Export Citation Format

Share Document