scholarly journals Synthesis of diesel-like hydrocarbon from Jatropha oil through catalytic pyrolysis

2018 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Bambang Heru Susanto ◽  
Muhammad Nasikin ◽  
Ayuko Cheeryo Sinaga ◽  
F Fransisca

Due to economical, social and ecological reason, several studies have been done in order to obtain alternative fuel sources. In this respect, fermentation, trans-esterification and pyrolysis if biomass have been proposed as alternative solutions. Among these different approaches, pyrolysis seems to be a simple and efficient method fuel production. Pyrolysis, assisted by solid catalysts, has also been reported and it was recognized that the product selectivity is strongly affected by the presence and the nature of heterogeneous catalysts. The catalytic pyrolysis of straight Jathropha curcas oil (SJO) over nanocrystalline NiO/Al2O33 at 475 OC was studied. NiO/Al2O3 catalyst was used in pyrolysis for purpose of selectively cracking of triglyceride. Nanocrystalline NiO/Al2O3 was prepared by simple heating method with polymer solution as growth inhibitor. The liquid product (bio-oil) were analyzed by GC-FID and FTIR, showing the formation of carboxylic acids, paraffin, olefins, and ketones. Measured physical properties of bio-oil is comparable to those specified for diesel oil. Keywords: SJO, nanocrystalline, simple heating method, catalytic pyrolysis, bio-oilAbstrakAdanya pertimbangan keekonomian, sosial, dan ekologi, menyebabkan dilakukannya penelitian guna mendapatkan sumber bahan bakar alternatif. Berkaitan dengan hal tersebut, maka reaksi-reaksi seperti permentasi, transesterifikasi dan pirolisis dari biomasa telah digunakan sebagai alternatif solusi. Diantara pendekatan-pendekatan yang berbeda tersebut, pirolisis merupakan metode yang sederhana dan efesien untuk menghasilkan bahan bakar. Pirolisis, yang dibantu dengan katalis padat, telah juga dilaporkan dan diketahui bahwa selektifitas produknya sangat dipengaruhi oleh kehadiran dan sifat dari katalis-katalis heterogen yang digunakan. Pirolisis berkatalis dari minyak jarak pagar (straight Jathropha curcas oil, SJO) melalui nanokristal NiO/Al2O3 pada suhu 475 OC telah dilakukan percobaanya. Katalis NiO/Al2O3 digunakan dalam pirolisis dengan tujuan untuk perengkahan selektif dari trigliserida. Nanokristal NiO/Al2O3 dibuat dengan menggunakan metode simple heating dengan pelarut polimer sebagai penghambat pertumbuhan. Produk cair yang dihasilkan (bio-oil) telah dianalisa dengan menggunakan GC-FID dan FTIR, memperlihatkan adanyanya gugus asam-asam karboksilat, parafin, olefin dan keton. Sifat fisik yang diukur dari biooil dapat diperbandingkan kesetaraanya dengan spesifikasi dari minyak solar.Kata kunci: SJO, nanokristal, metode simple heating, pirolisis berkatalis, bio-oil

2013 ◽  
Vol 334-335 ◽  
pp. 13-18 ◽  
Author(s):  
F.L. Mendes ◽  
A.R. Pinho ◽  
M.A.G. Figueiredo

The pyrolysis of biomass is a thermal process that converts, at high yield, solid biomass into a liquid product known as bio-oil. One alternative for the production of a bio-oil of better quality and with lower oxygen content is the use of catalysts in the pyrolysis reactor, rather than an inert, a process called catalytic pyrolysis. The objective of this study was to investigate the effects on product yields and the qualities of products of two different catalysts, one acidic, a commercial fluid catalytic cracking (FCC) catalyst, and a basic one containing hydrotalcite. Inert material, a type of silica, was used as reference. The tests were conducted in a pilot plant with a circulating fluidized bed reactor, specially adapted to perform the catalytic pyrolysis tests, at temperatures of 450°C and 550°C. The results showed that the increase in the residence time of the pyrolysis vapors had a significant impact on products yields, when compared with the profile found in the literature for fast pyrolysis. The FCC catalyst presented higher deoxygenation rates by dehydration, while the hydrotalcite showed greater capacity for decarboxylation. Thus, the use of either the FCC catalyst or hydrotalcite are not suitable for intermediate pyrolysis reactors, generating a product with high water content and low content of organic compounds in bio-oil and produce more coke. None of the materials tested produced bio-oils with considerable hydrocarbons yields and presented high amounts of phenolic compounds. In general, silica had the best results in terms of yield and quality of bio-oil.


2019 ◽  
Vol 23 (5) ◽  
pp. 517-529 ◽  
Author(s):  
Aiguo Wang ◽  
Danielle Austin ◽  
Hua Song

The heavy dependence on fossil fuels raises many concerns on unsustainability and negative environmental impact. Biomass valorization to sustainable chemicals and fuels is an attractive strategy to reduce the reliance on fossil fuel sources. Gasification, liquefaction and pyrolysis are the main thermochemical technologies for biomass conversion. Gasification occurs at high temperature and yields the gas (syngas) as the main product. Liquefaction is conducted at low temperature but high pressure, which mainly produces liquid product with high quality. Biomass pyrolysis is performed at a moderate temperature and gives a primarily liquid product (bio-oil). However, the liquid product from biomass conversion is not advantageous for direct use as a fuel. Compared to liquefaction, pyrolysis is favorable when the aim is to produce the maximum amount of the liquid product from the biomass. Hydrotreating for bio-oil upgrading requires a large amount of expensive hydrogen, making this process costly. Catalytic cracking of bio-oil to reduce the oxygen content leads to a low H/C ratio. Methanolysis is a novel process that utilizes methane instead of hydrogen for biomass conversion. The feasibility studies show that this approach is quite promising. The original complexity of biomass and variation in composition make the composition of the product from biomass conversion unpredictable. Model compounds are employed to better understand the reaction mechanism and develop an optimal catalyst for obtaining the desired product. The major thermochemical technologies and the mechanism based on model compound investigations are reviewed in the article.


2021 ◽  
Vol 657 (1) ◽  
pp. 012023
Author(s):  
Zengtong Deng ◽  
Yi Wang ◽  
Song Hu ◽  
Sheng Su ◽  
Long Jiang ◽  
...  
Keyword(s):  

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121778
Author(s):  
Shasha Liu ◽  
Gang Wu ◽  
Syed Shatir A. Syed-Hassan ◽  
Bin Li ◽  
Xun Hu ◽  
...  

2021 ◽  
Vol 1045 ◽  
pp. 194-202
Author(s):  
Siviwe H. Bunge ◽  
James L. Topkin ◽  
Joshua Gorimbo ◽  
Diakanua B. Nkazi

Sludge and screenings management is increasingly becoming a dilemma due its accumulating and tightening environmental regulations that limit its disposal methods. Various sludge management options have been researched, ranging from incineration, thermochemical liquefaction, to pyrolysis and gasification. This work proposes syngas, bio-oil, chemical resources and bio-char production for beneficiation through gasification of a mixture of sludge and screenings at different ratios of 25/75, 50/50 and 75/25. It also studies mass loss and toxins possible destruction by gasification temperatures and reactions. Toxicity and CHNS analysis before and after gasification were aimed at finding sludge energy content, while thermogravimetric analysis (TGA), was to find sampling and stopping temperatures during gasification. The overall best results of high syngas quality (high LHV, H2, CO and CH4 contents) and high quality bio-oil (i.e. cleanest, with high crude oil equivalent bonds such as C1 up to C36 and higher applicable bio-oil resources and chemical species obtained) was achieved by a 75/25 ratio, followed by a 50/50 ratio. The results also showed some possibility of biological and chlorinated hydrocarbon toxins (PCBs and PAHs) break down as well as the reduction of sludge and screenings to about 32% of the initial mass. These results can be further investigated for syngas application in power generation and liquid fuel production. Char toxicity can be analysed for its application in agriculture and for its adsorption properties. Char can be analysed for the presence of metals in it.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


Fuel ◽  
2010 ◽  
Vol 89 (1) ◽  
pp. 176-184 ◽  
Author(s):  
Başak Burcu Uzun ◽  
Esin Apaydin-Varol ◽  
Funda Ateş ◽  
Nurgül Özbay ◽  
Ayşe Eren Pütün

2018 ◽  
Vol 175 ◽  
pp. 17-25 ◽  
Author(s):  
Shuping Zhang ◽  
Houlei Zhang ◽  
Xinzhi Liu ◽  
Shuguang Zhu ◽  
Linlin Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document