scholarly journals Toxicities Demonstrated in Dams and Neonates following Intragastric Intubation of Polyethylene Microplastics to Pregnant Mice

2021 ◽  
Vol 47 (5) ◽  
pp. 446-453
Author(s):  
YoungMin Song ◽  
ChangYul Kim
Keyword(s):  
2020 ◽  
Vol 5 (2) ◽  
pp. 309-318
Author(s):  
Ihwan Ihwan ◽  
◽  
Rahmatia Rahmatia ◽  
Khildah Khaerati ◽  

Teratogenic is an abnormal development on embryo and is the cause of congenital defect or birth defect. This study aims to determine the effect of the addition of Dioscorea alata L. ethanol extracts to the embryo development on pregnant mice whose given orally to 24 mice which divided to 4 treatment groups, they are the normal group (NG) with NaCMC 0.5%; 28 mg/KgBB treatment group; 35 mg/KgBB; 42 mg/Kg BB. The addition of Dioscorea alata L ethanol extracts was done on the sixth day until the 15th day of pregnancy. On the 18th day of pregnancy, Laparaktomi was done to the pregnant mice and the embryo was taken out of the uterus. The observation was done to the fetus numbers, weight weighing of the fetus's body, dan length measurement of the fetus's body. Another observation is the observation of the external organ defect of the embryo. The study results that the addition of Dioscorea alata L ethanol extracts with various doses have no significant effect (P>0.5) to the mice external fetus development. On the examination of the fetus, we can conclude that Dioscorea alata L ethanol extracts don’t give any effect that may cause the defect of the fetus’ external organ.


2018 ◽  
Vol 24 (9) ◽  
pp. 989-992 ◽  
Author(s):  
Samir Gorasiya ◽  
Juliet Mushi ◽  
Ryan Pekson ◽  
Sabesan Yoganathan ◽  
Sandra E. Reznik

Background: Preterm birth (PTB), or birth that occurs before 37 weeks of gestation, accounts for the majority of perinatal morbidity and mortality. As of 2016, PTB has an occurrence rate of 9.6% in the United States and accounts for up to 18 percent of births worldwide. Inflammation has been identified as the most common cause of PTB, but effective pharmacotherapy has yet to be developed to prevent inflammation driven PTB. Our group has discovered that N,N-dimethylacetamide (DMA), a readily available solvent commonly used as a pharmaceutical excipient, rescues lipopolysaccharide (LPS)-induced timed pregnant mice from PTB. Methods: We have used in vivo, ex vivo and in vitro approaches to investigate this compound further. Results: Interestingly, we found that DMA suppresses cytokine secretion by inhibiting nuclear factor-kappa B (NF-κB). In ongoing work in this exciting line of investigation, we are currently investigating structural analogs of DMA, some of them novel, to optimize this approach focused on the inflammation associated with PTB. Conclusion: Successful development of pharmacotherapy for the prevention of PTB rests upon the pursuit of multiple strategies to solve this important clinical challenge.


2020 ◽  
Vol 21 (13) ◽  
pp. 1325-1332
Author(s):  
Mohammad Ahmad ◽  
Gasem M. Abu Taweel

Background: Developmental ethanol (EtOH) exposure can cause lifelong behavioral hyperactivity, cognitive deficits, emotional dysregulation, and more. However, co-treatment with lithium (Li) on the day of EtOH exposure prevents many of the impairments. Methods: Experimental groups of pregnant mice were exposed to EtOH (20% v/v solution at a dose of 2.5 g/kg) in their drinking water and the animals were treated with Li (15 and 30 mg/kg) through IP injection on gestational days14, 16, 18, and 20, and post-natal days (PD) 3, 5, 7, and 9. All treatments with EtOH and exposure to Li doses to pregnant mice started on gestational day 14 and continued until post-natal day 9 (PD9). The effects on some developing morphological indices, nerve reflexes during weaning age, and various cognitive dysfunctions at adolescent ages and biochemical changes in the brain tissue indices of below-mentioned neurotransmitters and oxidative stress in post-natal developing offspring at adolescent age, were studied. Results: Perinatal exposure to EtOH in pregnant mice resulted in several postnatal developing and morphological indices in the developing male pups during their weaning period, like gain in their body weight, delay in appearance of their body hair fuzz and opening of their eyes, and disruptions in their developing motor reflexes. Discussion: During adolescent age, a significant deficit in their learning capability and cognitive behavior, decline in the neurochemical DA and 5-HT in their brain and some indices of oxidative stress TBARS, GSH, GST, CAT, and SOD was observed. Conclusion: These results indicate that Li ameliorates significantly and dose-dependently EtOH induced developmental toxicities like morphological developments and dysfunctions in cognitive retention and oxidative stress on a long-term basis in brain tissue. However, further detailed studies are required for the clinical use of as an ameliorating agent for perinatal EtOH induced dysfunctions.


2020 ◽  
Vol 22 (1) ◽  
pp. 165
Author(s):  
Lucía Pérez-Roque ◽  
Elena Núñez-Gómez ◽  
Alicia Rodríguez-Barbero ◽  
Carmelo Bernabéu ◽  
José M. López-Novoa ◽  
...  

Preeclampsia is a pregnancy-specific disease of high prevalence characterized by the onset of hypertension, among other maternal or fetal signs. Its etiopathogenesis remains elusive, but it is widely accepted that abnormal placentation results in the release of soluble factors that cause the clinical manifestations of the disease. An increased level of soluble endoglin (sEng) in plasma has been proposed to be an early diagnostic and prognostic biomarker of this disease. A pathogenic function of sEng involving hypertension has also been reported in several animal models with high levels of plasma sEng not directly dependent on pregnancy. The aim of this work was to study the functional effect of high plasma levels of sEng in the pathophysiology of preeclampsia in a model of pregnant mice, in which the levels of sEng in the maternal blood during pregnancy replicate the conditions of human preeclampsia. Our results show that wild type pregnant mice carrying human sEng-expressing transgenic fetuses (fWT(hsEng+)) present high plasma levels of sEng with a timing profile similar to that of human preeclampsia. High plasma levels of human sEng (hsEng) are associated with hypertension, proteinuria, fetal growth restriction, and the release of soluble factors to maternal plasma. In addition, fWT(hsEng+) mice also present placental alterations comparable to those caused by the poor remodeling of the spiral arteries characteristic of preeclampsia. In vitro and ex vivo experiments, performed in a human trophoblast cell line and human placental explants, show that sEng interferes with trophoblast invasion and the associated pseudovasculogenesis, a process by which cytotrophoblasts switch from an epithelial to an endothelial phenotype, both events being related to remodeling of the spiral arteries. Our findings provide a novel and useful animal model for future research in preeclampsia and reveal a much more relevant role of sEng in preeclampsia than initially proposed.


Author(s):  
Meaghan J. Griffiths ◽  
Amy L. Winship ◽  
Jessica M. Stringer ◽  
Elyse O. Swindells ◽  
Alesia P. Harper ◽  
...  

Abstract Through drinking water, humans are commonly exposed to atrazine, a herbicide that acts as an endocrine and metabolic disruptor. It interferes with steroidogenesis, including promoting oestrogen production and altering cell metabolism. However, its precise impact on uterine development remains unknown. This study aimed to determine the effect of prolonged atrazine exposure on the uterus. Pregnant mice (n = 5/group) received 5 mg/kg body weight/day atrazine or DMSO in drinking water from gestational day 9.5 until weaning. Offspring continued to be exposed until 3 or 6 months of age (n = 5–9/group), when uteri were collected for morphological and molecular analyses and steroid quantification. Endometrial hyperplasia and leiomyoma were evident in the uteri of atrazine-exposed mice. Uterine oestrogen concentration, oestrogen receptor expression, and localisation were similar between groups, at both ages (P > 0.1). The expression and localisation of key epithelial-to-mesenchymal transition (EMT) genes and proteins, critical for tumourigenesis, remained unchanged between treatments, at both ages (P > 0.1). Hence, oestrogen-mediated changes to established EMT markers do not appear to underlie abnormal uterine morphology evident in atrazine exposure mice. This is the first report of abnormal uterine morphology following prolonged atrazine exposure starting in utero, it is likely that the abnormalities identified would negatively affect female fertility, although mechanisms remain unknown and require further study.


Author(s):  
Yan Zhang ◽  
Rufei Gao ◽  
Lei Zhang ◽  
Yanqing Geng ◽  
Qiutong Chen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document