PRESSURE-IMPULSE DIAGRAM OF THE FLNG TANKS UNDER SLOSHING LOADS

Author(s):  
S E Lee ◽  
J K Paik

Sloshing impact loads can cause severe structural damage to cargo tanks in liquefied natural gas floating production storage offloading units (LNG-FPSOs or FLNGs). Studies of sloshing can be classified into two types, namely, hydrodynamics-related and structural mechanics-related studies. This study is a sequel to the authors’ previous studies (Paik et al. 2015; Lee et al. 2015), but is more related to issues of structural mechanics. In this study, a new method for probabilistic sloshing assessment, which has been previously developed by the authors, is briefly explained. The nonlinear impact structural response characteristics under sloshing impact loads are examined by a nonlinear finite element ANSYS/LS-DYNA method. An iso-damage curve, representing a pressure-impulse diagram, is derived for the self-supporting prismatic-shape IMO B type LNG cargo containment system of a hypothetical FLNG. The insights developed from this work can be useful for the damage-tolerant design of cargo tanks in FLNGs.

2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
S E Lee ◽  
J K Paik

Sloshing impact loads can cause severe structural damage to cargo tanks in liquefied natural gas floating production storage offloading units (LNG-FPSOs or FLNGs). Studies of sloshing can be classified into two types, namely, hydrodynamics-related and structural mechanics-related studies. This study is a sequel to the authors’ previous studies (Paik et al. 2015; Lee et al. 2015), but is more related to issues of structural mechanics. In this study, a new method for probabilistic sloshing assessment, which has been previously developed by the authors, is briefly explained. The nonlinear impact structural response characteristics under sloshing impact loads are examined by a nonlinear finite element ANSYS/LS-DYNA method. An iso-damage curve, representing a pressure-impulse diagram, is derived for the self-supporting prismatic-shape IMO B type LNG cargo containment system of a hypothetical FLNG. The insights developed from this work can be useful for the damage-tolerant design of cargo tanks in FLNGs.


2014 ◽  
Vol 567 ◽  
pp. 499-504 ◽  
Author(s):  
Zubair Imam Syed ◽  
Mohd Shahir Liew ◽  
Muhammad Hasibul Hasan ◽  
Srikanth Venkatesan

Pressure-impulse (P-I) diagrams, which relates damage with both impulse and pressure, are widely used in the design and damage assessment of structural elements under blast loading. Among many methods of deriving P-I diagrams, single degree of freedom (SDOF) models are widely used to develop P-I diagrams for damage assessment of structural members exposed to blast loading. The popularity of the SDOF method in structural response calculation in its simplicity and cost-effective approach that requires limited input data and less computational effort. The SDOF model gives reasonably good results if the response mode shape is representative of the real behaviour. Pressure-impulse diagrams based on SDOF models are derived based on idealised structural resistance functions and the effect of few of the parameters related to structural response and blast loading are ignored. Effects of idealisation of resistance function, inclusion of damping and load rise time on P-I diagrams constructed from SDOF models have been investigated in this study. In idealisation of load, the negative phase of the blast pressure pulse is ignored in SDOF analysis. The effect of this simplification has also been explored. Matrix Laboratory (MATLAB) codes were developed for response calculation of the SDOF system and for repeated analyses of the SDOF models to construct the P-I diagrams. Resistance functions were found to have significant effect on the P-I diagrams were observed. Inclusion of negative phase was found to have notable impact of the shape of P-I diagrams in the dynamic zone.


Author(s):  
Angel Mateos ◽  
John Harvey ◽  
Miguel Millan ◽  
Rongzong Wu ◽  
Fabian Paniagua ◽  
...  

The capacity to resist flooding is one of the critical challenges of pavement resiliency in locations subject to inundation. Flooding increases moisture contents, which weakens most pavement materials. Although the effect of moisture on the mechanical properties of most pavement materials is reversible, the structural damage caused by trafficking applied on the weakened pavement structure is not. The critical time for structural damage is typically after the flood and before “life-line” pavements have dried back when trucks are bringing in relief supplies and hauling out demolition. This fact, together with the increased occurrence of extreme weather events and sea level rise resulting from climate change, emphasizes the need to better understand the impacts of flooding on identified life-line pavements. This paper evaluates the flooding resiliency of thin concrete overlay on asphalt (COA) pavements by studying the effects that water saturation produces on the pavement structure. The research is based on the structural response and distresses measured in five thin COA sections that were instrumented with sensors and tested with a heavy vehicle simulator (HVS) under flooded conditions. The research shows that the flooding did not produce a noticeable change in the structural capacity of the COA, based on the structural response measured under the loading of the HVS wheel and the falling weight deflectometer, but did result in some structural damage to the asphalt base in some of the sections.


Author(s):  
Sang-Yeob Kim ◽  
Yonghwan Kim ◽  
Yang-Jun Ahn

This paper introduces an outlier analysis which can improve the convergence of the statistical analysis results of sloshing model test data. The paper classify possible outliers in the sloshing model test into three categories and present a treatment method for each outlier. The developed outlier analysis is adapted to the model test results for the cargo of the liquefied-natural-gas (LNG) carrier in operation. The results of the present new method are compared with those of the conventional procedure, particularly focusing on long-term sloshing prediction. Through this study, the effectiveness of the present method is observed, and it is found that the present method provides is robust and reliable results in the application of experimental data for load prediction.


2019 ◽  
Vol 26 (4) ◽  
pp. 39-46 ◽  
Author(s):  
Ozgur Ozguc

Abstract Offshore structures are exposed to the risk of damage caused by various types of extreme and accidental events, such as fire, explosion, collision, and dropped objects. These events cause structural damage in the impact area, including yielding of materials, local buckling, and in some cases local failure and penetration. The structural response of an FPSO hull subjected to events involving dropped objects is investigated in this study, and non-linear finite element analyses are carried out using an explicit dynamic code written LS-DYNA software. The scenarios involving dropped objects are based on the impact from the fall of a container and rigid mechanical equipment. Impact analyses of the dropped objects demonstrated that even though some structural members were permanently deformed by drop loads, no failure took place in accordance with the plastic strain criteria, as per NORSOK standards. The findings and insights derived from the present study may be informative in the safe design of floating offshore structures.


2019 ◽  
Vol 16 (4) ◽  
pp. 742-752
Author(s):  
Cai Yang ◽  
Shengdong Liu ◽  
Haiping Yang

Abstract Deformation and rupture of rock mass under loading cause the variation of electric potential. Response characteristics of self-potential and stress during the complete stress-strain process of red sandstones play an important role in evaluating the stress state of sandstone on the basis of self-potential. Experimental results demonstrate that the stress of red sandstone under uniaxial compression is linearly correlated with the self-potential difference before the first inflection point in the initial stage of loading. The average variation rate of self-potential difference and stress is 0.1325 mV MPa−1. As the loading pressure gradually increases and enters the softening stage (before the maximum loading point), the catastrophic points of uniaxial loading stress correspond to the inflection point of self-potential. The self-potential of red sandstone varies in a range of 0–45.6 mV in that case and it fluctuates most significantly around the maximum loading point, with a range of 0.3–195.5 mV. In the end stage of loading, the macroscopic rupture of the red sandstone sample is complete, the self-potential of red sandstone fluctuates slightly around the maximum load point and then gradually stabilizes. Moreover, it is found that self-potentials change more significantly in the radial direction than in the axial direction in the uniaxial compression experiment, indicating that self-potentials generated by rock mass rupture are more sensitive in the radial direction. The rupture process of red sandstone can be dynamically represented by the tempo-spatial evolution profiles of self-potential.


Author(s):  
Francois C. Bardi ◽  
Huang Tang ◽  
Mohan Kulkarni ◽  
Xiaolei Yin

Significant gas resources remain to be developed in remote offshore locations. These resources can be produced through the use of a floating liquefied natural gas plant (FLNG) and exported through liquefied natural gas (LNG) carriers. Cryogenic flexible hoses provide a structurally compliant solution for the transfer of LNG between the FLNG and LNG carrier in harsh offshore environments. One of several cryogenic flexible hoses currently being developed in the industry is a structure composed of several layers; a corrugated stainless steel pipe in pipe structure reinforced using two layers of armoring wires. Thermal insulation of the inner hose is obtained by creating a vacuum in the annulus of the pipe in pipe. To ensure sound structural performance and integrity of the flexible hose during offloading operations, a Failure Mode and Effects Criticality Analysis (FMECA) was performed. 3D finite element models of the fully assembled hose and selective individual components were generated to assess their structural response to different loading scenarios, resulting stress concentrations and layer interactions. A sensitivity study of the corrugation profile of the corrugated pipe was performed to minimize stress concentrations and allowable bending radius.


Author(s):  
Randy J. James ◽  
Kenneth Jaquay ◽  
Michael J. Anderson

The proposed geologic repository under development at Yucca Mountain, Nevada, will employ multiple shell metallic containers (waste packages) for the disposal of nuclear waste. The waste packages represent a primary engineered barrier for protection and containment of the radioactive waste, and the design of these containers must consider a variety of structural conditions to insure structural integrity. Some of the more challenging conditions for structural integrity involve severe impact loading due to hypothesized event sequences, such as drops or collisions during transport and placement. Due to interactions between the various components leading to complex structural response during an impact sequence, nonlinear explicit dynamic simulations and highly refined models are employed to qualify the design for these severe impact loads. This paper summarizes the Design by Analysis methodologies employed for qualification of waste package design under impact loading and provides several illustrative examples using these methods. Example evaluations include a collision of a waste package by the Transport and Emplacement Vehicle (TEV) and two scenarios due to seismic events, including WP impact within the TEV and impact by falling rock. The examples are intended to illustrate the stringent Design by Analysis methods employed and also highlight the scope of structural conditions included in the design basis for waste packages to be used for proposed nuclear waste storage at Yucca Mountain.


Sign in / Sign up

Export Citation Format

Share Document