scholarly journals Nano-mechanical Properties of Nanocrystal of HfO2Thin Films for Various Oxygen Gas Flows and Annealing Temperatures

2012 ◽  
Vol 21 (5) ◽  
pp. 273-278 ◽  
Author(s):  
Joo-Young Kim ◽  
Soo-In Kim ◽  
Kyu-Young Lee ◽  
Ku-Eun Kwon ◽  
Min-Suk Kim ◽  
...  
2020 ◽  
Vol 992 ◽  
pp. 498-503
Author(s):  
S. Sidelnikov ◽  
D. Voroshilov ◽  
M. Motkov ◽  
M. Voroshilova ◽  
V. Bespalov

The article presents the results of studies on the production of wire with a diameter of 0.5 mm from aluminum alloy 01417 with a content of rare-earth metals (REM) in the amount of 7-9% for aircraft construction needs. The deformation modes, the experimental technique and equipment for the implementation of the proposed technology described. The wire was obtained by drawing and bar rolling with subsequent drawing from a rod with a diameter of 5 mm, obtained previously using the process of combined rolling-extruding (CRE) from a continuous ingot with a diameter of 12 mm, cast in an electromagnetic mold (EMM). The wire obtained by the presented technology was subjected to 4 different heat treatment modes with annealing temperatures from 350 to 500 °C and holding time of 1 h in the furnace to achieve mechanical and electrophysical properties corresponding to TS 1-809-1038-2018. The level of strength and plastic properties obtained in the course of research required only one intermediate annealing. The microstructure of the wire was investigated and the modes were revealed that made it possible to obtain the required level of mechanical properties and electrical resistivity, satisfying TS 1-809-1038-2018.


2010 ◽  
Vol 46 (1) ◽  
pp. 51-57 ◽  
Author(s):  
B. Trumic ◽  
D. Stankovic ◽  
A. Ivanovic

In order to form the necessary data base on platinum and platinum metals, certain tests were carried out on platinum samples of different purity of 99.5%, 99.9% and 99.99%. The degree of cold deformation, annealing temperature and chemical assays were tested as well as their impact on the mechanical properties of platinum. The Vickers hardness (HV) values were determined with different deformation degree, starting from annealing temperatures for platinum of different purity and tensile strength (Rm), flow limit (Rp0,2) and elongation (A) in the function of annealing temperatures and annealing time at a constant deformation degree.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3576 ◽  
Author(s):  
Peter Horňák ◽  
Daniel Kottfer ◽  
Karol Kyzioł ◽  
Marianna Trebuňová ◽  
Janka Majerníková ◽  
...  

The present work studies the tungsten carbide (WC/C) coatings deposited by using Plasma Enhanced Chemical Vapor Deposition (PECVD), with and without gases of Ar and N2. Volatile hexacarbonyl of W was used as a precursor. Their mechanical and tribological properties were evaluated. The following values were obtained by using deposition process with N2 of HIT = 19.7 ± 4.1 GPa, EIT = 221 ± 2.1 GPa, and coefficient of friction (COF) = 0.35 ± 0.09. Secondly, deposition without the aforementioned gas obtained values of HIT = 20.9 ± 2 GPa, EIT = 292 ± 20 GPa, and COF = 0.69 ± 0.05. WC/C coatings were annealed at temperatures of 200, 500, and 800 °C, respectively. Evaluated factors include the introduced properties, the observed morphology, and the structural composition of WC/C coatings. The process of degradation was carried out by using various velocities, depending on used gases and annealing temperatures.


Vacuum ◽  
2015 ◽  
Vol 115 ◽  
pp. 80-84 ◽  
Author(s):  
Fenghua Chen ◽  
Qingxue Huang ◽  
Zhengyi Jiang ◽  
Jingwei Zhao ◽  
Binyu Sun ◽  
...  

2017 ◽  
Vol 23 (6) ◽  
pp. 1119-1129 ◽  
Author(s):  
Lanlan Qin ◽  
Changjun Chen ◽  
Min Zhang ◽  
Kai Yan ◽  
Guangping Cheng ◽  
...  

Purpose Laser additive manufacturing (LAM) technology based on powder bed has been used to manufacture complex geometrical components. In this study, IN625 superalloys were fabricated by high-power fiber laser without cracks, bounding errors or porosity. Meanwhile, the objectives of this paper are to systemically investigate the microstructures, micro-hardness and the precipitated Laves phase of deposited-IN625 under different annealing temperatures. Design/methodology/approach The effects of annealing temperatures on the microstructure, micro-hardness and the precipitated Laves phase were studied by optical microscope (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), selected area electron diffraction (SAED), backscattered electron (BSE) imaging in the SEM and transmission electron microscopy (TEM), respectively. The thermal stability of the dendritic morphology about IN625 superalloys was investigated through annealing at temperatures range from 1,000°C to 1,200°C. Findings It is found that the microstructure of deposited-IN625 was typical dendrite structure. Besides, some Laves phase precipitated in the interdendritic region results in the segregation of niobium and molybdenum. The thermal stability indicate that the morphology of dendrite can be stable up to 1,000°C. With the annealing temperatures increasing from 1,000 to 1,200°C, the Laves phase partially dissolves into the γ-Ni matrix, and the morphology of the remaining Laves phase is changing from irregular shape to rod-like or block-like shape. Research limitations/implications The heat treatment used on the IN625 superalloys is helpful for knowing the evolution of microstructures and precipitated phases thermal stability and mechanical properties. Practical implications Due to the different kinds of application conditions, the original microstructure of the IN625 superalloys fabricated by LAM may not be ideal. So exploring the influence of annealing treatment on IN625 superalloys can bring theory basis and guidance for actual production. Originality/value This study continues valuing the fabrication of IN625 by LAM. It shows the effect of annealing temperatures on the shape, size and distribution of Laves phase and the microstructures of deposited-IN625 superalloys.


2013 ◽  
Vol 753 ◽  
pp. 473-476 ◽  
Author(s):  
Naoto Sakai ◽  
Kunio Funami ◽  
Masafumi Noda ◽  
Hisashi Mori ◽  
Kenji Fujino

In the present study, the grain refinement, grain growth behavior, and tensile properties of rolled and annealed AZX311 Mg alloys were investigated. The yield strength and ultimate tensile strength of the rolled material were 360 MPa and 370 MPa, respectively, and the total elongation was 5%. When annealing was performed at 423 K for 1hr, the yield strength and ultimate tensile strength were unchanged, but the elongation increased to 10%. Furthermore, the strength and elongation did not change for annealing temperatures of 473–673 K owing to Al2Ca precipitations.


Sign in / Sign up

Export Citation Format

Share Document