scholarly journals Conceptualization and Design of a Small Pyrolysis Plant for the Sustainable Production of Flexible Bricks and Bituminous Concrete from Polyethylene Terephthalate Waste

2021 ◽  
Author(s):  
Ngonidzashe L. Shangwa ◽  
Wilson R. Nyemba ◽  
Simon Chinguwa ◽  
Tien-Chien Jen

Polyethylene terephthalate is majorly used for packaging of various products because of its resistance to chemical attack and environmental degradation, but the proper disposal of this non-biodegradable material has been a major challenge. Pyrolysis is the melting of plastic in the absence of oxygen. Currently pyrolysis of polyethylene terephthalate is considered as a viable recycling method since it only requires 5% of the calorific value of polyethylene terephthalate. This research was aimed at designing a pyrolysis plant for the production of construction materials with acceptable mechanical properties such as compressive strength and water absorption. Sustainable, eco-friendly road construction from bituminous concrete with waste polyethylene terephthalate has the capability of reducing carbon emissions. The polyethylene terephthalate bituminous composite has the flexibility of plastic but strength of concrete. The bricks have a maximum compressive strength of 10 N/mm2 which is within the standard range and have less water absorbing tendencies hence have a longer lifespan. Value addition is equally important in the pyrolysis plant so as to contribute to sustainable development. This book chapter reviews the different products such as polyethylene terephthalate composite bricks and flexible pavements which can effectively use polyethylene terephthalate waste as a raw material.


2021 ◽  
Vol 9 (1) ◽  
pp. 019
Author(s):  
Muhammad Ridho Reksi ◽  
Dian Rahayu Jati ◽  
Yulisa Fitrianingsih

AbstractPlastic waste needs attention because it can cause serious problems if not managed properly. Of the various types of plastics, the most widely disposed of to the environment are Polypropylene, Polyethylene Terephthalate, and High-Density Polyethylene which are usually in the form of plastic bags and bottles. This research was conducted to make bricks made of plastic as an alternative material for infrastructure that is economical, strong, and durable, which is seen based on the compressive strength value based on its type, namely PP, PET, and HDPE plastic bricks. The compressive strength testing phase is carried out three times in each type. The selling price of plastic bricks is determined by the Markup pricing method. The process of plastic brick making includes collecting plastic waste, washing, drying, chopping, melting, and printing. Based on the research results, the plastic bricks produced from the types of PET, HDPE, and PP are in the form of blocks with a size of 19 cm x 10 cm x 6.5 cm, where the PET type brick requires 5.1 kg of waste, 3.6 kg of HDPE type, and the type of PP as much as 3 kg. The compressive strength test values for PP, PET, and HDPE plastic bricks have met the compressive strength standards based on SNI 15-2094-2000, with the highest average compressive strength test values found in PP plastic bricks of 246 kg/cm², plastic bricks HDPE type 166 kg/cm², and plastic brick type PET 98.7 kg/cm². The selling price of plastic bricks without including the purchase price of plastic as raw material for making plastic bricks (Scenario I) for PP plastic bricks costs Rp1.907,00/brick, PET types Rp3.024,00/brick, and HDPE types Rp3.464,00/brick. While the selling price of plastic bricks by entering the purchase price of plastic as raw material for making plastic bricks (Scenario II) for PP plastic bricks Rp2.867,00/brick, PET type Rp4.624,00/brick, and HDPE type Rp3.944,00/brick.Keywords: Compressive Strength, Markup Pricing, Plastic Brick. AbstrakSampah plastik perlu mendapatkan perhatian karena menimbulkan masalah yang serius jika tidak dikelola dengan baik. Dari berbagai jenis plastik, yang paling banyak dibuang ke lingkungan adalah jenis Polypropylene, Polyethylene Terephthalate, dan High Density Polyethylene yang biasanya dalam bentuk kantong dan botol plastik. Penelitian ini dilakukan guna membuat bata berbahan plastik sebagai bahan alternatif infrastruktur yang bersifat ekonomis, kuat dan tahan lama yang dilihat berdasarkan nilai kuat tekan berdasarkan jenisnya, yaitu bata plastik jenis PP, PET, dan HDPE. Tahap pengujian kuat tekan dilakukan sebanyak tiga kali pengulangan di setiap jenisnya. Harga jual bata plastik ditentukan dengan metode Markup pricing. Proses pembuatan bata plastik yaitu pengumpulan sampah plastik, pencucian, penjemuran, pencacahan, pelelehan, dan pencetakan. Berdasarkan hasil penelitian, bata plastik yang dihasilkan dari jenis PET, HDPE, dan PP berbentuk balok dengan ukuran 19 cm x 10 cm x 6,5 cm, dimana bata jenis PET memerlukan sampah sebanyak 5,1 kg, jenis HDPE sebanyak 3,6 kg, dan  jenis PP sebanyak 3 kg. Nilai uji kuat tekan pada bata plastik jenis PP, PET, dan HDPE telah memenuhi standar kuat tekan berdasarkan SNI 15-2094-2000, dengan nilai uji kuat tekan rata-rata tertinggi terdapat pada bata plastik jenis PP sebesar 246 kg/cm², bata plastik jenis HDPE 166 kg/cm², dan bata plastik jenis PET 98,7 kg/cm². Harga jual bata plastik tanpa memasukkan harga beli plastik sebagai bahan baku pembuatan bata plastik (Skenario I) pada bata plastik jenis PP seharga Rp1.907,00/bata, jenis PET Rp3.024,00/bata, dan jenis HDPE Rp3.464,00/bata. Sedangkan harga jual bata plastik dengan memasukkan harga beli plastik sebagai bahan baku pembuatan bata plastik (Skenario II) pada bata plastik jenis PP Rp2.867,00/bata, jenis PET Rp4.624,00/bata, dan jenis HDPE Rp3.944,00/bata.Kata Kunci: Bata Plastik, Kuat Tekan, Markup Pricing.



2021 ◽  
Author(s):  
Teewara SUWAN ◽  
Peerapong Jitsangiam ◽  
Hemwadee THONGCHUA ◽  
Ubolluk RATTANASAK ◽  
Weerachart TANGCHIRAPAT ◽  
...  

Abstract A more sustainable and innovative cementitious material would serve green construction for the future and could yield tremendous leverage to the problem of CO2 emissions. Alkali-activated materials (AAMs) could be an alternative binder for relatively low strength construction and rehabilitation as a cement replacement material. The lower strength requirements, e.g., road construction materials, compared to other applications could ease any difficulties with AAM production. For this study, crushed rock (CR) was used as the prime material of a precursor. A laboratory investigation of mechanical properties was performed in conjunction with XRF, XRD, and SEM techniques. The results showed that CR-based AAM with an optimum mixture of 5 M of NaOH concentration, an SS/SH ratio of 1.0, and a liquid-to-binder (L/B) ratio of 0.5 could be used a part of relatively low strength materials. At this ratio, the paste samples cured at room temperature (25 ⁰C) had an early compressive strength of 3.82 MPa, and the paste samples cured at 60 ⁰C had an early compressive strength of 6.45 MPa. The results passed the target compressive strength of cementitious construction materials such as construction block (3.0 MPa–7.0 MPa) and cement-treated base (CTB) for pavement (2.1 MPa–5.5 MPa).



2021 ◽  
Vol 1197 (1) ◽  
pp. 012041
Author(s):  
Kartik D Rathod ◽  
Isha Khedikar ◽  
Kuldeep Dabhekar

Abstract In these project Polyethylene terephthalate fiber (PET) fibers are use to improve the mechanical property of concrete and minimize the environmental pollution of earth. PET is use to prepare container for water, cold drinks, food etc. which is single used and it thrown in to the sea, dump on free land and burning. It cause many serious effect on animals, sea animals, destroy land fertility and other health related issues. The PET material are used to improve mechanical property of concrete like compressive strength, dry and wet density and static and dynamic elastic modulus. Thus fibers are available in natural and artificial material. Now a days, artificial fibers are widely used in India. The types of fibers are plastic fibers, glass fibers, steel fibers etc. In India according to solid waste management data is 15,350 tons daily and 1,84,120 tons annually generate, but only 9,350 tons daily and 1,12,120 tons annually collected. So the uncollected data is that about 6000 tons daily and 72,000 tons annually uncollected, in such a way that it causes many problems to the atmosphere so that it becomes environmentally harmful. For developing country concrete is most important material. It is extensively used in construction industry. Concrete have many advantages like long service life, durability, chemical attack resistance etc. Thus concrete has some many disadvantage like low tensile strength, flexural strength and cracks. To overcome these disadvantage add some supplements in concrete to improve its strength. The fiber are one of them. It reduces environmental problem it becomes eco-friendly. In case of compressive strength test, wet density test and direct method of UPV result are obtain as concrete carry higher applied load also it give high compressive strength, high wet and dry density of concrete and quality of concrete is good when adding 0.4% of shape - 01 PET fiber in concrete.



2013 ◽  
Vol 212 ◽  
pp. 195-200 ◽  
Author(s):  
Teresa Lis ◽  
Krzysztof Nowacki ◽  
Tomasz Małysa

The iron and steel industry is one of the largest sources of waste materials, primarily in the form of steelmaking dusts, sludge and slag. Those wastes are a serious threat to the environment. Main precondition for the protection of natural resources in the environment is to recover raw material and energy from waste. The use of waste as raw materials does not involve the storage and creates the possibility of closure of the existing landfill. The article presented utilization of same metallurgical waste containing 4-20 wt. % zinc in non-metallurgical industry. Performed chemical analyzes of pollutants contained in waste tested (dusts, sludge and slag) and in manufactured products (cement bricks, ceramic construction materials, colored glass products and slag for road construction). Aqueous extracts analysis results were compared with the maximum values for the sewage entering into water and soil. The performed research proves that proposed technologies (production of cement clinker, construction bricks, hollow glass, decorated glass) do not pose threat to environment. Harmful impurities are eluted from the products – clinker, constructions bricks and slag after the recovery of zinc recovery. Proposed technologies substitution of primary raw materials recyclable materials can reduce environmental degradation.



Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7177
Author(s):  
Adrian Alexandru Șerbănoiu ◽  
Cătălina Mihaela Grădinaru ◽  
Nicanor Cimpoeșu ◽  
Dumitru Filipeanu ◽  
Bogdan Vasile Șerbănoiu ◽  
...  

The use of plant ash as a sustainable cementitious material in concrete composition is a widely researched subject in the construction domain. A plant studied so far more for its thermal insulation properties, sunflower, was analyzed in this study with regard to its ash effects on the concrete composition. The present research aimed to analyze the effects of a 2.5%, 5%, 7.5%, 10%, 15%, 20%, or 30% volume replacement of cement by sunflower stalk ash (SA), a sustainable cementitious material, on the concrete compressive strength at 28 days and three months, the flexural and splitting tensile strengths, the resistance to repeated freeze–thaw cycles, and the resistance to chemical attack of hydrochloric acid. The elementary chemical composition of the SA and the composites was included also. According to the experimental results, SA decreased the values of the compressive and tensile strength of the concrete, but it improved the concrete behavior under repeated freeze–thaw cycles and under the action of hydrochloric acid. A percent of 10% of SA led to a much more pronounced development of compressive strength over time than conventional concrete (26.6% versus 12%).



2021 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Alessandro P. Fantilli ◽  
Riccardo Calvi ◽  
Edoardo Quieti ◽  
Pier Luigi Radavelli

Buildings and infrastructures can absorb CO2 from the atmosphere because of the carbonation process that affects the calcium hydroxide of concrete elements. The aim of this research project is to initiate the absorption at casting by adding dry ice pellets to cement-based mortars. Test results demonstrate that the flexural and compressive strength of the mortars are not modified by this addition. Conversely, due to the presence of CO2, the standard deviation of strength reduces with respect to that measured in plain mortars. Thus, carbon dioxide can be considered a valuable resource that improves the mechanical behavior of construction materials.



2018 ◽  
Vol 7 (1) ◽  
pp. 28-33
Author(s):  
Okta Bani ◽  
Iriany ◽  
Taslim ◽  
Cici Novita Sari ◽  
Cindy Carnella

Briquettes are solid fuels from organic materials with high calorific values ​​and burn duration. The composition and particle size of the raw material may affect briquette quality. This study aimed to evaluate the effect of composition and particle size on calorific value and characteristics of the resulting briquettes. In this study, briquettes were made using palm oil fronds and shells at mass ratio of 1:2, 1:4, 1:6, 1:8 and particle size of not-dertemined, 50, 70, and 100 mesh. First, raw material was carbonized at 450°C for 30 minutes then added to 20%wt. starch glue and waste oil (1:1 ratio). Resulting briquettes were analyzed for its water content, ash content, density, volatile matter content, fixed carbon content, combustion rate, calorific value, and compressive strength. Satisfying results were obtained for briquettes with a front to shell ratio of 1:8, and a particle size of 100 mesh. At this condition, the resulting briquettes have water content of 5.5%; ash content of 2.54%; density of 0.51 g/cm3; 19.58% vapor content; fixed carbon content of 72.38%; combustion rate of 0.2 g/min (3.4×10-3 g/sec); calorific value of 15.3 kcal/g; and compressive strength of 0.06 N/mm2. These results have complied with the Indonesian National Standard (SNI), Japanese, American, and English standards, except for briquette compressive strength, which have not met the industrial standard.



2008 ◽  
Vol 569 ◽  
pp. 209-212
Author(s):  
Dae Yong Shin ◽  
Kyung Nam Kim

Municipal incinerator residue (MIR) was used as raw material to replace clay to manufacture bricks. Brick specimens were substituted from 0 to 50 wt% MIR by 10 wt% increment for clay. Clay-MIR brick specimens were fired at 800~1050°C for 2 h. Firing shrinkage, bulk density, water absorption rate and compressive strength were investigated. Leaching procedure tests were also conducted to characterize toxicity. Increasing MIR contents resulted in a decrease in water absorption rate, firing shrinkage and increase in compressive strength of bricks. It was found that when brick specimen with 50 wt% of MIR content was heat-treated at 1000°C for 2 h, a brick specimen could be generated, which was compressive strength of 1256 kg/cm2, water absorption ratio of 6.8% and firing shrinkage of 3.5%. This indicates that MIR is indeed suitable for the partial replacement of clay in bricks



2016 ◽  
Vol 2 (2) ◽  
pp. 136-142
Author(s):  
Idzni Qistina ◽  
Dede Sukandar ◽  
Trilaksono Trilaksono

Abstrak Biomassa seperti sekam padi dan tempurung kelapa dapat menjadi sumber bahan baku briket sebagai salah satu energi alternatif pengganti bahan bakar fosil (minyak bumi).Penelitian ini bertujuan untuk mengkaji kualitas briket sekam padi dan tempurung kelapa melalui proses semi-karbonisasi pada temperatur antara 50-125 0C dengan durasi waktu proses 50-120 menit. Proses pembuatan briket meliputiproses semi-karbonisasi, pencampuran biomassa dengan perekat, pencetakan, pengeringan, dan uji kualitas briket. Pengujian kualitas briket meliputi analisis briket yaitu nilai kalor, kadar air, fixed carbon, volatile matter, abu, dan analisis ultimat. Disamping itu juga dilakukan uji kuat tekan, pengukuran emisi gas, dan uji termal briket yang dihasilkan.Hasilnya menunjukkan penurunan kadar air bahan baku briket sekam padi dan tempurung kelapa membutuhkan energi masing-masing 8.54% dan 4.97% dari proses karbonisasi murni yang menghasilkan semi arang. Nilai kalor briket sekam padi maupun tempurung kelapa mengalami penurunan masing-masing 9.72% dan 7.21% jika dibandingkan dengan bahan bakunya.Gas emisi dari briket sekam padi dan tempurung kelapa yaitu gas NOx, SOx, CO, dan hidrokarbon (HC) masih di bawah baku mutu yang dipersyaratkan. Hasil uji termal briket menunjukkan efisiensi termal briket sekam lebih baik dibandingkan briket tempurung kelapa dengan nilai efisiensi masing-masing sebesar 31.13% dan 22.28%. Kata kunci: Briket sekam padi, briket tempurung kelapa, semi karbonisasi, emisi gas, efisiensi termal. Abstract   Biomass energy, among others, rice husk and coconut shell can be an alternative energy source to replace fossil fuels (petroleum). This study aims to assess the quality briquettes rice husk and coconut shell with raw materials through semi-carbonization process at a temperature between 50-125 0C with a duration of 50-120 minutes of processing time. Briquetting process meliputu semi-carbonization, refining raw materials and sieving made passes restrained 30 mesh and 30 detained 50 mesh. Then do the mixing biomass with adhesive, printed, dried and tested briquette quality test. Briquette quality testing consists of the analysis of the characteristics of briquettes are calorific value, moisture content, fixed carbon, volatile matter, ash, and the ultimate analysis. Besides, it also conducted compressive strength test, the measurement of gas emission, and thermal test briquettes were produced. The results show a decrease in raw material briquettes moisture content of rice husk and coconut shell on semi karbonization process requiring respectively 8.54% and 4.97% of the energy of pure carbonization process which produces semi charcoal. Calorific value briquettes rice husk and coconut shell fell respectively 9.72% and 7.21% when compared to the raw material. The quality of biomass briquettes is based on the results of the analysis of the characteristics and compressive strength test briquettes showed that coconut shell briquettes better quality than the rice husk briquettes. Briquettes gas emissions from rice husks and coconut shells are gas NOx, SOx, CO and hydrocarbons (HC) is still below the quality standards required. The test results demonstrate the thermal efficiency of thermal briquettes rice husk briquettes for 31.13% and better than coconut shell briquettes by 22.28%. Keywords: Briquette rice husk, coconut shell briquettes, semi-carbonization, gases,thermal efficiency DOI: http://dx.doi.org/10.15408/jkv.v0i0.4054



Sign in / Sign up

Export Citation Format

Share Document