scholarly journals Animal Models in Exosomes Research: What the Future Holds

Author(s):  
Bárbara Adem ◽  
Sónia A. Melo
Keyword(s):  
2021 ◽  
Author(s):  
Moataz Dowaidar

Mesenchymal stem cells (MSCs) have been a new research focus for cancer treatment. Future cancer sufferers will considerably profit from their use in the future. Tumor-directed migratory and integration capacities of MSCs are exceptional, making them potential carriers for the delivery of anticancer medicines, notably cytokines. Their usage in the clinic has lasted around 10 years. The use of mesenchymal stem cells (MSCs) to create successful cancer treatments has been demonstrated in everything from animal models to human studies.


Author(s):  
Mikhail V. Pletnikov ◽  
Christopher A. Ross

Despite the recent advances in research into schizophrenia and bipolar disorder, the neurobiology of these maladies remains poorly understood. Animal models can be instrumental in elucidating the underlying mechanisms of neuropsychiatric disorders. Early animal models of schizophrenia and bipolar disorder used lesion methods, pharmacologic challenges or environmental interventions to mimic pathogenic features of the diseases. The recent progress in genetics has stimulated the development of etiological models that have begun to provide insight into pathogenesis. In this review, we evaluate the strengths and weaknesses of the existing genetic mouse models of schizophrenia and discuss potential developments for the future.


2003 ◽  
Vol 6 (1) ◽  
Author(s):  
Jong B Kim ◽  
Michael J O'Hare ◽  
Robert Stein

2007 ◽  
Vol 292 (2) ◽  
pp. C658-C669 ◽  
Author(s):  
Shaharyar M. Khan ◽  
Rafal M. Smigrodzki ◽  
Russell H. Swerdlow

The past two decades have witnessed an evolving understanding of the mitochondrial genome’s (mtDNA) role in basic biology and disease. From the recognition that mutations in mtDNA can be responsible for human disease to recent efforts showing that mtDNA mutations accumulate over time and may be responsible for some phenotypes of aging, the field of mitochondrial genetics has greatly benefited from the creation of cell and animal models of mtDNA mutation. In this review, we critically discuss the past two decades of efforts and insights gained from cell and animal models of mtDNA mutation. We attempt to reconcile the varied and at times contradictory findings by highlighting the various methodologies employed and using human mtDNA disease as a guide to better understanding of cell and animal mtDNA models. We end with a discussion of scientific and therapeutic challenges and prospects for the future of mtDNA transfection and gene therapy.


2002 ◽  
Vol 18 (5-6) ◽  
pp. 365-374 ◽  
Author(s):  
Barbara Y. Croft

Animal models can be used in the study of disease. This chapter discusses imaging animal models to elucidate the process of human disease. The mouse is used as the primary model. Though this choice simplifies many research choices, it necessitates compromises forin vivoimaging. In the future, we can expect improvements in both animal models and imaging techniques.


Author(s):  
Hana Gardenia Mahbubah ◽  
Topik Hidayat ◽  
Bambang Supriatno

<p class="Abstract">Evolution is one of the main subjects of biology taught in science colleges. Unfortunately, students seem less attention to this subject. In the subject of evolution, the lesson commonly uses the animal as a model to improve the students understanding. The purpose of this study is to compare the ability of tree thinking students who use animals and plants as a model in the evolution lesson. Tree thinking refers to an approach to evolution that emphasizes reading and interpreting phylogenetic tree. This study involved 20 undergraduate students enrolled in the evolution course for biology majors at Universitas Pendidikan Indonesia (UPI). The tree thinking ability of students was measured using Tree Thinking Concept Inventory (TTCI) of Naegle with a little modification. In this test, we analyzed student preferences using animal or plant models using phylogenetic tree diagrams. Results showed that students’ TTCI score was higher when using animal models (65.42%) than plant models (55%). These results suggested that students remain to prefer animal models compare to plant models to study evolution. Nevertheless, the use of plants as models can be an alternative to learning evolution in the future.</p>


Sci ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 45
Author(s):  
Eleonore Fröhlich

Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future.


Sign in / Sign up

Export Citation Format

Share Document