scholarly journals Animal Models for imaging

2002 ◽  
Vol 18 (5-6) ◽  
pp. 365-374 ◽  
Author(s):  
Barbara Y. Croft

Animal models can be used in the study of disease. This chapter discusses imaging animal models to elucidate the process of human disease. The mouse is used as the primary model. Though this choice simplifies many research choices, it necessitates compromises forin vivoimaging. In the future, we can expect improvements in both animal models and imaging techniques.

2020 ◽  
Vol 21 (14) ◽  
pp. 4993 ◽  
Author(s):  
Raphael Mohr ◽  
Burcin Özdirik ◽  
Jana Knorr ◽  
Alexander Wree ◽  
Münevver Demir ◽  
...  

Cholangiocarcinoma (CCA) comprises a heterogeneous group of primary liver tumors. They emerge from different hepatic (progenitor) cell populations, typically via sporadic mutations. Chronic biliary inflammation, as seen in primary sclerosing cholangitis (PSC), may trigger CCA development. Although several efforts were made in the last decade to better understand the complex processes of biliary carcinogenesis, it was only recently that new therapeutic advances have been achieved. Animal models are a crucial bridge between in vitro findings on molecular or genetic alterations, pathophysiological understanding, and new therapeutic strategies for the clinic. Nevertheless, it is inherently difficult to recapitulate simultaneously the stromal microenvironment (e.g., immune-competent cells, cholestasis, inflammation, PSC-like changes, fibrosis) and the tumor biology (e.g., mutational burden, local growth, and metastatic spread) in an animal model, so that it would reflect the full clinical reality of CCA. In this review, we highlight available data on animal models for CCA. We discuss if and how these models reflect human disease and whether they can serve as a tool for understanding the pathogenesis, or for predicting a treatment response in patients. In addition, open issues for future developments will be discussed.


2007 ◽  
Vol 292 (2) ◽  
pp. C658-C669 ◽  
Author(s):  
Shaharyar M. Khan ◽  
Rafal M. Smigrodzki ◽  
Russell H. Swerdlow

The past two decades have witnessed an evolving understanding of the mitochondrial genome’s (mtDNA) role in basic biology and disease. From the recognition that mutations in mtDNA can be responsible for human disease to recent efforts showing that mtDNA mutations accumulate over time and may be responsible for some phenotypes of aging, the field of mitochondrial genetics has greatly benefited from the creation of cell and animal models of mtDNA mutation. In this review, we critically discuss the past two decades of efforts and insights gained from cell and animal models of mtDNA mutation. We attempt to reconcile the varied and at times contradictory findings by highlighting the various methodologies employed and using human mtDNA disease as a guide to better understanding of cell and animal mtDNA models. We end with a discussion of scientific and therapeutic challenges and prospects for the future of mtDNA transfection and gene therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mari Carmen Gómez-de Frutos ◽  
Iván García-Suárez ◽  
Fernando Laso-García ◽  
Luke Diekhorst ◽  
Laura Otero-Ortega ◽  
...  

Background: Magnetic resonance imaging (MRI) is currently used for the study of intracerebral hemorrhage (ICH) in animal models. However, ultrasound is an inexpensive, non-invasive and rapid technique that could facilitate the diagnosis and follow-up of ICH. This study aimed to evaluate the feasibility and reliability of B-mode ultrasound as an alternative tool for in vivo monitoring of ICH volume and brain structure displacement in an animal model.Methods: A total of 31 male and female Sprague-Dawley rats were subjected to an ICH model using collagenase-IV in the striatum following stereotaxic references. The animals were randomly allocated into 3 groups: healthy (n = 10), sham (n = 10) and ICH (n = 11). B-mode ultrasound studies with a 13-MHz probe were performed pre-ICH and at 5 h, 48 h, 4 d and 1 mo post-ICH for the assessment of ICH volume and displacement of brain structures, considering the distance between the subarachnoid cisterns and the dura mater. The same variables were studied by MRI at 48 h and 1 mo post-ICH.Results: Both imaging techniques showed excellent correlation in measuring ICH volume at 48 h (r = 0.905) and good at 1 mo (r = 0.656). An excellent correlation was also observed in the measured distance between the subarachnoid cisterns and the dura mater at 1 mo between B-mode ultrasound and MRI, on both the ipsilateral (r = 0.870) and contralateral (r = 0.906) sides of the lesion.Conclusion: B-mode ultrasound imaging appears to be a reliable tool for in vivo assessment of ICH volume and displacement of brain structures in animal models.


Sci ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 45
Author(s):  
Eleonore Fröhlich

Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future.


Author(s):  
Eleonore Fröhlich

Testing in animals is mandatory in drug testing and the gold standard for evaluation of toxicity. This situation is expected to change in the future because the 3Rs principle, which stands for replacement, reduction and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animals experiments have increased. The necessity to develop and use of alternatives is influenced by the complexity of the research topic and also by the fact, to which extent the currently used animal models can mimic human physiology and/or exposure. Rodent lung morphology and physiology differs markedly for that of humans and inhalation exposure of the animals are challenging. In vitro and in silico methods can assess important aspects of the in vivo action, namely particle deposition, dissolution, action at and permeation across the respiratory barrier and pharmacokinetics. Out of the numerous homemade in vitro and in silico models some are available commercially or open access. This review discusses limitations of animal models and exposure systems and proposes a panel of in vitro and in silico techniques that, in the future, may replace animal experimentation in inhalation testing.


ILAR Journal ◽  
2018 ◽  
Vol 59 (1) ◽  
pp. 40-50
Author(s):  
Sue E Knoblaugh ◽  
Tobias M Hohl ◽  
Krista M D La Perle

Abstract Over 60% of NIH extramural funding involves animal models, and approximately 80% to 90% of these are mouse models of human disease. It is critical to translational research that animal models are accurately characterized and validated as models of human disease. Pathology analysis, including histopathology, is essential to animal model studies by providing morphologic context to in vivo, molecular, and biochemical data; however, there are many considerations when incorporating pathology endpoints into an animal study. Mice, and in particular genetically modified models, present unique considerations because these modifications are affected by background strain genetics, husbandry, and experimental conditions. Comparative pathologists recognize normal pathobiology and unique phenotypes that animals, including genetically modified models, may present. Beyond pathology, comparative pathologists with research experience offer expertise in animal model development, experimental design, optimal specimen collection and handling, data interpretation, and reporting. Critical pathology considerations in the design and use of translational studies involving animals are discussed, with an emphasis on mouse models.


2015 ◽  
Vol 8 ◽  
pp. JCD.S23844 ◽  
Author(s):  
Chanel L.I. Keoni ◽  
Thomas L. Brown

Apoptosis is physiological cell death required for the cellular maintenance of homeostasis, and caspases play a major role in the execution of this process. Numerous disorders occur when levels of apoptosis within an organism are excessive, and several studies have explored the possibility of using caspase inhibitors to prevent these disorders. Q-VD-OPh (quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone), a novel pan caspase inhibitor, has been used because of its efficacy to inhibit apoptosis at low concentrations, its ability to cross the blood–brain barrier, as well as being nontoxic in vivo. This review examines Q-VD-OPh's ability to inhibit apoptosis in several animal models of human disease.


2020 ◽  
Vol 134 (11) ◽  
pp. 1219-1242 ◽  
Author(s):  
Mikael Adner ◽  
Brendan J. Canning ◽  
Herman Meurs ◽  
William Ford ◽  
Patricia Ramos Ramírez ◽  
...  

Abstract Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future.


Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


Sign in / Sign up

Export Citation Format

Share Document