scholarly journals Plasma Damage on Low-k Dielectric Materials

Author(s):  
Yi-Lung Cheng ◽  
Chih-Yen Lee ◽  
Chiao-Wei Haung
2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


2005 ◽  
Vol 103-104 ◽  
pp. 357-360
Author(s):  
B.G. Sharma ◽  
Chris Prindle

Interconnect RC delay is the limiting factor for device performance in submicron semiconductor technology. Copper and low-k dielectric materials can reduce this delay and have gained widespread acceptance in the semiconductor industry. The presence of copper interconnects provides unprecedented challenges for via cleaning technology and requires the development of novel process chemistries for improved device capability.


2000 ◽  
Vol 77 (1) ◽  
pp. 145-147 ◽  
Author(s):  
Chuan Hu ◽  
Michael Morgen ◽  
Paul S. Ho ◽  
Anurag Jain ◽  
William N. Gill ◽  
...  

1999 ◽  
Vol 565 ◽  
Author(s):  
Chuan Hu ◽  
Michael Morgen ◽  
Paul S. Ho ◽  
Anurag Jain ◽  
William. N. Gill ◽  
...  

AbstractA quantitative characterization of the thermal properties is required to assess the thermal performance of low dielectric constant materials. Recently we have developed a technique based on the 3-omega method for measuring the thermal conductivity of porous dielectric thin films. In this paper we present the results on the measurements of thermal conductivity of thin porous films using this method. A finite element method analysis is used to evaluate the approximations used in the measurement. Two porosity-weighted thermal resistor models are proposed to interpret the results. By studying the dependence of the thermal conductivity on porosity, we are able to discuss the scaling rule of thermal conductivity. Additionally, a steady state layered heater model is used for evaluating the significance of introducing porous ILDs into an interconnect structure.


2008 ◽  
Vol 1079 ◽  
Author(s):  
Premysl Marsik ◽  
Adam Urbanowicz ◽  
Klara Vinokur ◽  
Yoel Cohen ◽  
Mikhail R Baklanov

ABSTRACTPorous low-k dielectrics were studied to determine the changes of optical properties after various plasma treatments for development of scatterometry technique for evaluation of the trench/via sidewall plasma damage. The SiCOH porogen based low-k films were prepared by PE-CVD. The deposited and UV-cured low-k films have been damaged by striping O2Cl2, O2, NH3 and H2N2 based plasmas and CF4/CH2F2/Ar etching plasma. Blanket wafers were studied in this work for the simplicity of thin film optical model. The optical properties of the damaged low-k dielectrics are evaluated the using various angle spectroscopic ellipsometry in range from 2 to 9 eV. Multilayer optical model is applied to fit the measured quantities and the validity is supported by other techniques. The atomic concentration profiles of Si, C, O and H were stated by TOF-SIMS and changes in overall chemical composition were derived from FTIR. Toluene and water based ellipsometric porosimetry is involved to examine the porosity, pore interconnectivity and internal hydrophilicity.


2003 ◽  
Vol 795 ◽  
Author(s):  
Y. Lin ◽  
J. J. Vlassak ◽  
T. Y. Tsui ◽  
A. J. McKerrow

ABSTRACTUnderstanding subcritical fracture of low-k dielectric materials and barrier thin films in buffered solutions of different pH value is of both technical and scientific importance. Subcritical delamination of dielectric and metal barrier films from low-k organosilicate glass (OSG) films in pH buffer solutions was studied in this work. Crack path and subcritical fracture behavior of OSG depends on the choice of barrier layers. For the OSG/TaN system, fracture takes place in the OSG layer near the interface, while in OSG/SiNx system, delamination occurs at the interface. Delamination behavior of both systems is well described by a hyperbolic sine model that had been developed previously based on a chemical reaction controlled fracture process at the crack tip. The threshold toughness of both systems decreases linearly with increasing pH value. The slopes of the reaction-controlled regime of the crack velocity curves for both systems are independent of pH as predicted by the model. Near transport-controlled regime behavior was observed in OSG/TaN system.


2019 ◽  
Vol 13 (3) ◽  
pp. 511-516 ◽  
Author(s):  
Romain Chanson ◽  
Remi Dussart ◽  
Thomas Tillocher ◽  
P. Lefaucheux ◽  
Christian Dussarrat ◽  
...  

2010 ◽  
Vol 1249 ◽  
Author(s):  
George Andrew Antonelli ◽  
Gengwei Jiang ◽  
Mandyam Sriram ◽  
Kaushik Chattopadhyay ◽  
Wei Guo ◽  
...  

AbstractOrganosilicate materials with dielectric constants (k) ranging from 3.0 to 2.2 are in production or under development for use as interlayer dielectric materials in advanced interconnect logic technology. The dielectric constant of these materials is lowered through the addition of porosity which lowers the film density, making the patterning of these materials difficult. The etching kinetics and surface roughening of a series of low-k dielectric materials with varying porosity and composition were investigated as a function of ion beam angle in a 7% C4F8/Ar chemistry in an inductively-coupled plasma reactor. A similar set of low-k samples were patterned in a single damascene scheme. With a basic understanding of the etching process, we will show that it is possible to proactively design a low-k material that is optimized for a given patterning. A case study will be used to illustrate this point.


Sign in / Sign up

Export Citation Format

Share Document