scholarly journals Formation and Transformation of Typical Pollutant from MSW by Hydrothermal Carbonization towards Biofuel Hydrochar Production

Mapping Intimacies â—½  
2020 â—½  
Author(s):  
Wentao Jiao â—½  
Nana Peng â—½  
Zhengang Liu

An unprecedented increase in municipal solid waste (MSW) is increasingly attractive in response to waste-to-energy. MSW pretreatment is an essential step due to the inherent properties of MSW. Hydrothermal carbonization (HTC) offers an efficient approach for converting MSW into carbonaceous hydrochars. In this chapter, the formation and transformation of heavy metals and polycyclic aromatic hydrocarbons (PAHs) during HTC of MSW were determined. The results indicated that HTC can homogenize the density and size of MSW and also increase carbon content. Moreover, the concentrations of heavy metals in the leachates of the hydrochars were lower than the United States Environmental Protection Agency (US EPA) maximum limits. Compared to MSW, the concentrations of Cr, Cd, Hg, and Zn in the hydrochars were low and the concentrations of Pb, As, Ni, and Cu were high. The concentrations of PAHs in the hydrochars increased with increasing temperature in the range of 1298.71–177698.20 μg/kg, which were much higher than that in MSW, except for H-160. The dominant PAH rings in MSW and the hydrochars were four-ring PAHs and three-ring PAHs, respectively. These findings suggest that 180°C is an appropriate hydrothermal temperature to reduce heavy metals and the toxicity PAHs of MSW.

2018 â—½  
Vol 13 (No. 2) â—½  
pp. 74-82 â—½  
Author(s):  
S. Kuang â—½  
Y. Su â—½  
J. Zhang â—½  
Z. Song â—½  
H. Wang â—½  
...  

The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), which are on the United States Environmental Protection Agency (US EPA) priority pollutant list, were studied in ten different soil samples from Shengli Oil Field, China. The total PAHs concentrations in the sampled soils attained 1214.9–2965.1 ng/g (2159.6 ng/g on average). The highest total PAHs concentration was in the soil with a huge content of oil sludge, while the lowest was in fine soil environment areas. The soil contamination with PAHs in the study areas was classified as severe. The major pollutants were naphthalene, phenathrene, fluorine (Flu), pyrene (Pyr), while the detected concentration of benzo(a)pyrene (BaP), benzo(b)fluoranthene was relatively low. Among the 16 kinds of PAHs, the concentration increased in the order: 6 rings < 5 rings < 4 rings < 2 rings < 3 rings. The ratios of Flu/(Flu + Pyr) and indeno benzene(1,2,3-c,d)pyrene (IP)/(IP + BaP) were 0.46–0.48, and 0.36–0.64, respectively. Our results suggest that the main sources of PAHs were petroleum extraction and petroleum combustion. In addition, a small amount of PAHs originated from combustion of grass, woods, and coal.  


2021 â—½  
pp. 074823372110195
Author(s):  
Fatemeh Dehghani â—½  
Fariborz Omidi â—½  
Reza Ali Fallahzadeh â—½  
Bahman Pourhassan

The present work aimed to evaluate the health risks of occupational exposure to heavy metals in a steel casting unit of a steel plant. To determine occupational exposure to heavy metals, personal air samples were taken from the workers’ breathing zones using the National Institute for Occupational Safety and Health method. Noncancer and cancer risks due to the measured metals were calculated according to the United States Environmental Protection Agency procedures. The results indicated that the noncancer risks owing to occupational exposure to lead (Pb) and manganese were higher than the recommended value in most of the workstations. The estimated cancer risk of Pb was also higher than the allowable value. Moreover, the results of sensitivity analysis indicated that the concentration, inhalation rate, and exposure duration were the most influencing variables contributing to the calculated risks. It was thus concluded that the present control measures were not adequate and further improvements were required for reducing the exposure levels.


2019 â—½  
Vol 6 (1) â—½  
pp. 1-7
Author(s):  
Reza Shokoohi â—½  
Samira Moradi â—½  
Zhila Ghavami â—½  
Azam Nadali â—½  
Raheleh Amiri

In this study, qualitative characteristics of the sludge produced in Hamadan wastewater treatment plant and the feasibility of its application in agricultural lands were investigated. Samples were taken from the primary and secondary sludge and indices such as VS/TS, PH, TKN, COD, TKN, SOUR, Na, Ca, SAR, heavy metals and biological properties (the mean fecal coliform count and the number of parasitic eggs) were measured. The results were compared with the United States Environmental Protection Agency (US EPA) standards (40 FCR-503). The results showed that the VS/TS ratio of the raw sludge was 0.8, 0.55, and 0.55 and that of the secondary sludge was 0.65, 0.28, and 0.32 for fall, winter, and summer, respectively. The average concentration of COD, TKN, SOUR, Na, and Ca for the initial sludge was 51283, 107, 0.50, 609, and 952 and for secondary sludge, it was 35595, 81, 4.90, 306, and 493 mg/L, respectively. The MPN for primary and secondary sludge was determined to be 19.83 × 106 and 186 × 106 , respectively and the average number of parasite eggs in primary and secondary sludge was 7.05 and 7.2 in 4 g of dry solids. Entamoeba coli had the highest number of parasite. The results of this study showed that the highest concentration of heavy metals in the sludge was 21396 mg/kg. The values obtained for the above-mentioned indices and heavy metals were in standards range. The results of this study show that none of the primary and secondary sludge samples has been properly stabilized. The values obtained for biological characteristics of sludge were not in the standard range. Therefore, it was revealed that the use of sludge for agriculture needed more stabilization.


Water â—½  
10.3390/w11040854 â—½  
2019 â—½  
Vol 11 (4) â—½  
pp. 854 â—½  
Author(s):  
Samuel D. Jesse â—½  
Paul C. Davidson

Recycling post-hydrothermal liquefaction wastewater (PHWW) may allow the use of nutrients in the aqueous phase that may otherwise go unused. PHWW is an attractive option for use as fertilizer in systems like crop production. However, there are potential contaminants in the PHWW that may inhibit crop growth or pose a food safety risk. This study investigated the concentrations of heavy metals and nutrients in the PHWW, as well as the presence of indicator pathogens. In addition, four different water treatment methods were used: (1) dilution of raw PHWW, (2) sand filtration after dilution, (3) sand and carbon filtration after dilution, and (4) reverse osmosis after dilution. Our results indicate that the concentrations of cadmium, lead, and arsenic in raw PHWW were well below the maximum recommended concentrations set by the US Environmental Protection Agency (US EPA) for Water Reuse. In addition, the treatment methods in this study achieved percent removals ranging from 82–100% for cadmium, 99–100% for mercury, 75–99.5% for lead, and 71–99% for arsenic. Nitrogen in raw PHWW was predominantly in the total N form, preventing it from being accessible to plants. After nitrification was induced, the concentration of NO3 + NO2 increased by 1.75 mg/L in the untreated 5% PHWW mixture, but remained unchanged or decreased for all other treatments and mixtures. There were no E. coli or coliform colonies detected in the raw PHWW, or in any PHWW mixtures. All PHWW mixtures with and without treatment are within US EPA guidelines for metals for irrigation water reuse. However, fertilizer supplementation may be required for PHWW to be suitable for crop production, as the low concentrations of NO3 + NO2 may prove challenging for growing crops.


2020 â—½  
Vol 17 (3) â—½  
pp. 904
Author(s):  
Rodrigo Mundo â—½  
Tetsuya Matsunaka â—½  
Hisanori Iwai â—½  
Shouzo Ogiso â—½  
Nobuo Suzuki â—½  
...  

To improve the understanding of the emission sources and pathways of polycyclic aromatic hydrocarbons (PAHs) in the coastal environments of remote areas, their particulate and dissolved concentrations were analyzed on a monthly basis from 2015 to 2018 in surface waters of Nanao Bay, Japan. The concentration of the targeted 13 species of PAHs on the United States Environmental Protection Agency (USEPA) priority pollutant list in dissolved and particle phases were separately analyzed by high-performance liquid chromatography (HPLC) coupled to a fluorescence detector. Particulate and dissolved PAHs had average concentrations of 0.72 ng∙L−1 and 0.95 ng∙L−1, respectively. While most of the samples were lower than 1 ng∙L−1, abnormally high levels up to 10 ng∙L−1 were observed in the winter of 2017–2018 for particulate PAHs. Based on the isomer ratios of Flu to Flu plus Pyr, it was possible to determine that the pyrogenic loads were greater than the petrogenic loads in all but four out of 86 samples. The predominant environmental pathway for PAHs in winter was determined to be long-range atmospheric transportation fed by the East Asian winter monsoon, while for the summer, local sources were more relevant. By the risk quotients method, it was determined that PAHs in surface seawater presented a very low risk to marine life during the interannual survey.


Molecules â—½  
2020 â—½  
Vol 25 (8) â—½  
pp. 1815 â—½  
Author(s):  
Aleksandra Ukalska-Jaruga â—½  
Karolina Lewińska â—½  
Elton Mammadov â—½  
Anna Karczewska â—½  
Bożena Smreczak â—½  
...  

The aim of this study was to identify and examine the levels of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in soil collected from the surroundings of historical pesticide storage facilities on former agricultural aerodromes, warehouses, and pesticide distribution sites located in the most important agricultural regions in Azerbaijan. The conducted research included determination of three groups of POPs (occurring together), in the natural soil environment influenced for many years by abiotic and biotic factors that could have caused their transformations or decomposition. In this study, soil samples were collected in 21 georeferenced points located in the administrative area of Bilasuvar, Saatly, Sabirabad, Salyan and Jalilabad districts of Azerbaijan. Soil chemical analysis involved determination of organochlorine compounds (OCP): hexachlorocyclohexanes (HCHs) (three isomers α-HCH, β-HCH and γ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (six congeners 2,4′DDT; 4,4′DDT; 2,4′DDE; 4,4′DDE; 2,4′DDE; and 4,4′DDE); polycyclic aromatic hydrocarbons (PAHs): 16 compounds from the United States Environmental Protection Agency US EPA list and, PCBs (seven congeners identified with the following IUPAC numbers: 28, 52, 101, 118, 138, 153, and 180). Our research showed that OCPs reached the highest concentration in the studied areas. The total concentrations of OCPs ranged from 0.01 to 21,888 mg∙kg−1 with significantly higher concentrations of Σ6DDTs (0.01 μg kg−1 to 21880 mg kg−1) compared to ΣHCH (0.14 ng kg−1 to 166.72 µg kg−1). The total concentrations of PCBs in the studied soils was varied from 0.02 to 147.30 μg·kg−1 but only PCB138 and PCB180 were detected in all analyzed samples. The concentrations of Σ16 PAHs were also strongly diversified throughout the sampling areas and ranged from 0.15 to 16,026 mg kg−1. The obtained results confirmed that the agricultural soils of Azerbaijan contained much lower (up to by three orders of magnitude) concentrations of PCBs and PAHs than DDT. It is supported by the fact that PCBs and PAHs were not directly used by agriculture sector and their content results from secondary sources, such as combustion and various industrial processes. Moreover, the high concentrations of PAHs in studied soils were associated with their location in direct neighborhood of the airport, as well as with accumulation of contaminants from dispersed sources and long range transport. The high concentrations of pesticides confirm that deposition of parent OCPs have occurred from obsolete pesticide landfills.


Foods â—½  
2021 â—½  
Vol 10 (2) â—½  
pp. 381
Author(s):  
Mayeen Uddin Khandaker â—½  
Nwokoma Oliver Chijioke â—½  
Nurul’ Adillah Binti Heffny â—½  
David A. Bradley â—½  
Abdullah Alsubaie â—½  
...  

While the consumption of seaweed and seaweed-based products is very common amongst East Asian nations, forming a notable component of the daily diet, relatively very few studies have concerned the concentrations of heavy metals in these together with potential effects on human health. The present study analyses the concentrations of 17 elements in locally resourced seaweed, also assessing potential noncarcinogenic and carcinogenic risks. The samples were ground, homogenized, and quantified using the ICP-OES technique. It has been found that the essential elements K, Ca, Mg, Zn, and Na typically show concentrations somewhat greater than a number of potentially toxic metals, in particular, Cd, Pb, Ag, and As, with exceptions being Ni, Cr-VI, and Si. Statistical analysis indicates all of the latter to have similar origin, with increased concentration of these metals within the marine ecosystem. While the daily estimated intake of most metals is seen to be within the daily dietary allowance level recommended by various international organizations, the noncarcinogenic risk shows a value greater than unity, estimated via the hazard quotient. This indicates a potential for adverse effects to health arising from consumption of the sampled seaweed. The carcinogenic risk resulting from nonessential elements shows values greater than the United States Environmental Protection Agency (US-EPA) reference limit of 10−4. Considering the nonbiodegradability of heavy metals and metalloids and their potential accumulation in seaweed, there is need for critical examination of metal levels in the seaweeds obtained from the present study locations, together with the introduction of practices of removal of heavy metals via bio-adsorbent techniques.


2020 â—½  
Vol 14 (3) â—½  
pp. 420-429
Author(s):  
Guiping Xu â—½  
Chaobing Deng â—½  
Wei Guo â—½  
Hongxiang Zhu â—½  
Xiaofei Wang â—½  
...  

Seven varieties of sugarcane were grown on soil polluted with heavy metals, including Pb, Cd, and As. Sugarcane growth, the heavy metal contents in different sugarcane tissues, and the subcellular distributions of the heavy metals in the roots and leaves were analyzed. The purpose of this investigation was to study sugarcane growth tolerance, the accumulation of heavy metals and the mechanism of sugarcane tolerance to heavy metals at the subcellular level. Health risk assessments were performed according to the models recommended by the United States Environmental Protection Agency (US EPA). The patterns of heavy metal storage were demonstrated to differ among different tissues in all sugarcane varieties investigated. Most of the heavy metals that were absorbed accumulated in the roots of the sugarcane, and the heavy metals in the root cells were mostly located in the cell wall. The health risk index was used to analyze the juice and indicated that the consumption of sugarcane juice by adults and children posed no significant health risks. This study shows that sugarcane grown on heavy metal-contaminated farmland is safe for consumption. The results of this study revealed an important and positive implication regarding the cultivation of sugarcane on farmland that is polluted by heavy metals and the potential to simultaneously achieve sustainable economic output and potential environmental restoration.


2020 â—½  
Vol 12 (1) â—½  
pp. 531-543
Author(s):  
Pedro José Sanches Filho â—½  
Julia Arduim â—½  
Glauco Rasmussen Betemps â—½  
Gabriela Oliveira Andrade â—½  
Ricardo Correa da Silva da Silva

This study evaluates the presence and levels of polycyclic aromatic hydrocarbons (PAHs) in Achyrocline Satureioides (inflorescences and infusions) using extraction under ultrasound accompanied by clean up with solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry. Sixteen priority PAHs were listed as priority contaminants by the United States Environmental Protection Agency and PAHs (Benzo(a)Anthracene, Chrysene, Benzo(b)Fluoranthene, Benzo(a)Pyrene) were chosen as indicators by the European Food Safety Agency for the presence of PAHs in food. The HPAs concentrations ranged from 48.1 µg Kg-1 ± 1.4% to 48.8 µg Kg-1 ± 1.9% in Achyrocline Satureioides inflorescences. The total concentration in infusions of PAHs was 2.5 µg L-1 ± 6.3%. The sum of the priority PAHs in Achyrocline Satureioides samples ranged from 126.8 µg Kg-1 ± 13.6% and 218.9 µg Kg-1 ± 16.1% and infusion had a value of 10.0 µg L-1 ± 8.1%. The PAH concentrations in tea infusions are lower when compared with other food matrices, but the migration of these compounds for tea is high, resulting in levels that may cause damage to health.


Sustainability â—½  
10.3390/su132112244 â—½  
2021 â—½  
Vol 13 (21) â—½  
pp. 12244
Author(s):  
Yasser A. El-Amier â—½  
Armel Zacharie Ekoa Bessa â—½  
Ashraf Elsayed â—½  
Mohamed A. El-Esawi â—½  
Mohammad S. AL-Harbi â—½  
...  

Environmental pollution and its eco-toxicological impacts have become a large and interesting concern worldwide as a result of fast urbanization, population expansion, sewage discharge, and heavy industrial development. Nine heavy metals (Pb, Cd, Fe, Mn, Zn, Ni, Cu, Cr, and Co) were evaluated in 20 sediment samples from the estuaries of four major drains along the Mediterranean shoreline (Nile Delta coast) to determine the possible ecological effect of high heavy metal concentrations as well as roots and shoots of two common macrophytes (Cyperus alopecuroides and Persicaria salicifolia). For sediment, single- and multi-elemental standard indices were used to measure ecological risk. Data revealed high contents of heavy metals, for which the mean values of heavy metals in sediment followed a direction of Fe > Mn > Co > Zn > Cu > Ni > Cr > Pb > Cd, Fe > Mn > Co > Ni > Zn > Cu > Cr > Pb > Cd and Fe > Mn > Zn > Co > Cu > Ni > Cr > Pb > Cd for drains stream, estuaries, and Mediterranean coast, respectively. Mn, Cr, Zn, and Pb were found to be within Canadian Soil Quality Guidelines (CSQGD) and U.S. Environmental Protection Agency Guidelines (US-EPA) limitations, except for Zn and Pb in drain streams, which were above the US-EPA limits, whereas Cd, Co, Cu, and Ni indicated a high ecological risk index. This high quantity of contaminants might be linked to unabated manufacturing operations, which can bio-accumulate in food systems and create significant health issues in people. C. alopecuroides root demonstrated a more efficient accumulation of all metals than the shoot system. For most heavy metals, C. alopecuroides had the highest root BAF levels with the exception of Ni and Pb in P. salicifolia. As a result, C. alopecuroides might be employed as a possible phytoextractor of these dangerous metals, while P. salicifolia could be used as a hyper-accumulator of Ni and Pb. The policymaker must consider strict rules and restrictions against uncontrolled industrial operations, particularly in the Nile Delta near water streams.


Sign in / Sign up

Export Citation Format

Share Document