scholarly journals Harnessing the Multiple Benefits of a Computerised Maintenance Management System

Author(s):  
Edoghogho Ogbeifun ◽  
Patrick Pasipatorwa ◽  
Jan-Harm C. Pretorius

Those involved in maintenance operations are enjoying the benefits of information and communication technology in the planning and management of maintenance activities, resource management and planned production. In the digital space, the computer-based operating systems, commonly referred to as computerised maintenance management systems (CMMSs), enable quick and effective communication between stakeholders, facilitate improved planning, easy access to historical data, reporting and performance improvements of the maintenance function. However, success in the use of CMMSs depends on the human capacity of the users of the system. In practice, many organisations use the CMMS tool for planning, operations management and reporting, without the aid of detailed analysis of operational information in the CMMS database. They fail to harness all the possible benefits. Three case studies were used to illustrate the situation. Two of them refer to academic institutions and the third is a manufacturing company. In the academic institutions, the CMMS was used for maintenance planning, management and periodic reporting. The manufacturing company included analysis of the information in the operational database, which culminated in identifying the level of the reliability of machines in the production network through benchmarking. The conclusion is that the quality of the human capacity enables organisations to harness and make maximum use of the potentials inherent in typical CMMS software.

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 49-54 ◽  
Author(s):  
E. Todd Ryan ◽  
Andrew J. McKerrow ◽  
Jihperng Leu ◽  
Paul S. Ho

Continuing improvement in device density and performance has significantly affected the dimensions and complexity of the wiring structure for on-chip interconnects. These enhancements have led to a reduction in the wiring pitch and an increase in the number of wiring levels to fulfill demands for density and performance improvements. As device dimensions shrink to less than 0.25 μm, the propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant. Accordingly the interconnect delay now constitutes a major fraction of the total delay limiting the overall chip performance. Equally important is the processing complexity due to an increase in the number of wiring levels. This inevitably drives cost up by lowering the manufacturing yield due to an increase in defects and processing complexity.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILDs) and alternative architectures have surfaced to replace the current Al(Cu)/SiO2 interconnect technology. These alternative architectures will require the introduction of low-dielectric-constant k materials as the interlayer dielectrics and/or low-resistivity conductors such as copper. The electrical and thermomechanical properties of SiO2 are ideal for ILD applications, and a change to material with different properties has important process-integration implications. To facilitate the choice of an alternative ILD, it is necessary to establish general criterion for evaluating thin-film properties of candidate low-k materials, which can be later correlated with process-integration problems.


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


Author(s):  
B. Verhaelen ◽  
F. Mayer ◽  
S. Peukert ◽  
G. Lanza

AbstractThe trend of globalization has led to a structural change in the sales and procurement markets of manufacturing companies in recent decades. In order not to be left behind by this change, companies have internationalized their production structures. Global production networks with diverse supply and service interdependencies are the result. However, the management of global production networks is highly complex. Key performance indicator (KPI) networks already exist at the corporate level and site level to support the management of complex systems. However, such KPI networks are not yet available to support the management of entire production networks. In this article, a KPI network for global production networks is presented, which links the key figures of the site level and the corporate level. By integrating both levels into a comprehensive KPI network, cause and effect relationship between the production-related KPIs and the strategic KPIs of a corporate strategy become transparent. To this end, this KPI network is integrated into a Performance Measurement and Management (PMM) methodology. This methodology consists of three phases: performance planning, performance improvement, and performance review. For testing the practical suitability, the PMM methodology is applied to the production network of an automotive supplier using a simulation model to estimate the effects of proposed improvement actions of the methodology.


AIHA Journal ◽  
2003 ◽  
Vol 64 (5) ◽  
pp. 660-667 ◽  
Author(s):  
Katharyn A. Grant ◽  
John G. Garland ◽  
Todd C. Joachim ◽  
Andrew Wallen ◽  
Twyla Vital

Author(s):  
K. Boddenberg ◽  
B. Kock ◽  
M. Dorfman ◽  
L. Russo ◽  
M. Nestler

Abstract Air separation plants use centrifugal compressors where air and electrical energy are the only raw materials used in the production process. So energy costs play a crucial role and the compressors are heavily penalized when guaranteed performance levels are not achieved. In order to better generate performance, abradable coatings, previously used in the gas turbine industry, have been designed into turbocompressors. This paper will show the optimization and performance improvements of a new aluminium silicon-boron nitride material.


2018 ◽  
Vol 7 (4.7) ◽  
pp. 131
Author(s):  
NV Abhinav Chand ◽  
A Hemanth Kumar ◽  
Surya Teja Marella

Emerging cloud computing technology is a big step in virtual computing. Cloud computing provides services to clients through the internet. Cloud computing enables easy access to resources distributed all over the world. Increase in the number of the population has further increased the challenge. The main challenge of cloud computing technology is to achieve efficient load balancing. Load balancing is a process of assigning load to available resources in such a way that it avoids overloading of resources. If load balancing is performed efficiently, it improves QoS metric including cost, throughput, response time, resource utilization and performance. Efficient load balancing techniques also provide better user satisfaction. Various load balancing algorithms are used in different scenarios for ensuring the same. In the current research, we will study different algorithms for load balancing and benefits and limitations caused to the system due to the algorithms. In this paper, we will compare static and dynamic load balancing algorithms for various measures of efficiency. These will be useful for future research in the concerned field. 


Author(s):  
Pavitra Dhamija

Competent intellectual capital is one of the most essential wealth that an organization requires in the present era of cutthroat competition. Operations management is nothing but management of operational processes in every big and small organization, and such activities constitute a major chunk of all organizational activities. Therefore, the present work targets to explore the association between intellectual capital and operational excellence, review of already conducted studies in the said area, and future directions through systematic literature review process. A total number of 165 articles provided by Scopus database (2010 to 2019) is used for analysis and interpretation. Bibliometric analysis and network analysis deliver significant clusters (operations management and optimization; intellectual capital and intellectual investment; knowledge management and decision support system; strategic planning and resource allocation; sustainable operations management and performance standards; behavioural research and change management), which is in turn a novel contribution of this article. The study concludes with a proposed conceptual model and key take away for researchers, academicians, and managers.


Sign in / Sign up

Export Citation Format

Share Document