scholarly journals Ecohydrology: An Integrative Sustainability Science

Hydrology ◽  
2021 ◽  
Author(s):  
Maciej Zalewski

The dynamic of the water cycle in catchments is determined by climate, geology, geomorphology, plant cover ad modified by agriculture, urbanisation, industrial development and hydroengineering infrastructure. Up until the end of the 20th century, water management was dominated by a mechanistic approach, focused on the elimination of threats such as floods and droughts and providing resources for the society with little to no regard for the impact this approach had on the ecosystem. Highlighting of water as a key driver of ecosystem dynamics, and further ecohydrology which highlights water/biota interactions from molecular to catchment scale provide a new perspective, new tools and new systemic solutions for enhancement of catchment sustainability potential WBSRCE (consisting of 5 elements: Water, Biodiversity, Ecosystem Services for Society, Resilience and Culture and Education).

2008 ◽  
Vol 57 (5) ◽  
pp. 741-746 ◽  
Author(s):  
N Bertrand ◽  
B Jefferson ◽  
P Jeffrey

With the growth of urban areas and climate change, decisions need to be taken to improve water management. This paper reports an assessment of the impact of greywater recycling systems on catchment scale hydrological flows. A simulation model developed in InfoWorks CS (Wallingford Software Ltd) was used to evaluate how river flows, sewer flows, surface runoff and flooding events may be influenced when grey water recycling systems of different number and scale are implemented in a representative catchment. The simulations show the effectiveness of greywater recycling systems in reducing total wastewater volume and flood volume. However, no hydraulic impacts due to implementation of greywater was identified by the model.


2017 ◽  
Vol 41 (7) ◽  
pp. 936-953 ◽  
Author(s):  
Silvia Sanz-Blas ◽  
Enrique Bigné ◽  
Daniela Buzova

Purpose The purpose of this paper is to analyse the impact of the following variables: brand fan page dependency; parasocial interaction; attitude towards brand fan pages in enhancing users’ participation in Facebook as a mobile social network (m-WOM). Design/methodology/approach An empirical study was carried out by means of online interviews with structured questionnaires. To analyse the data, and estimate the hypothesised relationships in the theoretical model, the partial least squares equation modelling was used. Findings The results of the study indicate that accessing brands’ mobile Facebook fan pages can satisfy the needs of understanding, orientation and play. These needs, in turn, influence users’ attitude, as well as their active and passive participation. Besides, users’ active participation in brands’ fan pages is enhanced by the direct and positive influence of attitude and passive participation. Practical implications This research enables brands to know which aspects to highlight in their communication strategies in order to increase the user’s active participation and generate m-WOM. Brands need to post information which is not only relevant, but also entertaining and visually attractive. Furthermore, they should foster the user-brand interaction to achieve users’ engagement with the brand. Originality/value The contribution of the present research is threefold. First, it offers a new perspective in explaining eWOM participation in mobile settings based on social networks. Second, it is argued that dependency is a key driver in explaining m-WOM. Lastly, integrating parasocial integration in the authors’ model highlights the communication nature of the word-of-mouth process.


2014 ◽  
Vol 70 (11) ◽  
pp. 1838-1846 ◽  
Author(s):  
M. Mair ◽  
C. Mikovits ◽  
M. Sengthaler ◽  
M. Schöpf ◽  
H. Kinzel ◽  
...  

Research in urban water management has experienced a transition from traditional model applications to modelling water cycles as an integrated part of urban areas. This includes the interlinking of models of many research areas (e.g. urban development, socio-economy, urban water management). The integration and simulation is realized in newly developed frameworks (e.g. DynaMind and OpenMI) and often assumes a high knowledge in programming. This work presents a Web based urban water management modelling platform which simplifies the setup and usage of complex integrated models. The platform is demonstrated with a small application example on a case study within the Alpine region. The used model is a DynaMind model benchmarking the impact of newly connected catchments on the flooding behaviour of an existing combined sewer system. As a result the workflow of the user within a Web browser is demonstrated and benchmark results are shown. The presented platform hides implementation specific aspects behind Web services based technologies such that the user can focus on his main aim, which is urban water management modelling and benchmarking. Moreover, this platform offers a centralized data management, automatic software updates and access to high performance computers accessible with desktop computers and mobile devices.


Author(s):  
Evandro L. Rodrigues ◽  
Marcos A. T. Elmiro ◽  
Francisco de A. Braga ◽  
Claudia M. Jacobi ◽  
Rafael D. Rossi

Plant cover plays an essential role in the maintenance and balance of the hydrological cycle, performing functions in the control of water availability, which guarantee flow permanence. The use of mathematical models is an alternative to represent the hydrological system and help in the understanding of phenomena involving the variables of the water cycle, in order to anticipate and predict impacts from potential changes in land use. In the present study, the hydrological model SWAT (Soil and Water Assessment Tool) was used to analyse the dynamics of flow and water flow in the Pará River Basin, Minas Gerais, Brazil, aiming to evaluate the impact caused by changes in land use in water availability. The adjusted model was assessed by the coefficient of efficiency of Nash-Sutcliffe (between -0.057 to -0.059), indicating high correlation and coefficient of residual mass (0.757 to 0.793) and therefore a satisfactory fit. An increase of about 10% in the basin flow was estimated, as a function of changes in land use, when simulating the removal of the original 'Cerrado' vegetation and of the seasonal semideciduous forest for pasture implementation in 38% of the basin.


2021 ◽  
Author(s):  
Katja Irob ◽  
Britta Tietjen ◽  
Niels Balum

<p>Changing climatic conditions and unsustainable management strategies associated with biodiversity loss are perceived as major threats to Namibian savannahs. In the past, land-use in Namibia is dominated by livestock-farming as one of the major economic products. However, high grazing pressure led to degrading pastures in many regions in the country. In response, more farmers have recently shifted their land-use strategy from livestock to wildlife-based management, with so far unclear consequences for ecosystem dynamics. <br>In this study, the ecohydrological, spatially explicit savanna model EcoHyD (Tietjen et al. 2009, 2010; Lohmann et al. 2012, Guo et al. 2016) was used to assess the impact of different land-use strategies on plant composition and ecosystem properties. The aim was to systematically evaluate the impact of different land-use strategies in terms of animal types and densities on the diversity of major plant groups (shrubs, perennial and annual grasses) and on several ecosystem processes. The results allow for identifying sustainable landuse strategies that avoid degradation and that lead to long-term provision of ecosystem services and economic income. <br>We identified typical different functional plant types (PFTs) of the study region and parameterized the model to reflect the local environmental dynamics of the private game reserve Etosha Heights in Namibia. Afterwards, we run the model and assessed the composition and cover of our simulated PFTs, as well as water availability dependent on the land-use scenario. The results are in line with our expectations: they show that total plant cover increases with decreasing stocking rate and that cover and biodiversity are generally higher in browsing scenarios. In addition, we could explore, which PFTs of a given plant group are best adapted to grazing or browsing animals in a certain density. We could also show that perennial grasses benefitted more than shrubs from lower stocking rates. This benefit led to an improved soil water availability to plants, since less water was lost by overland flow, implying also a lower erosion risk. As the model has been applied to a variety of environmental settings regarding climatic conditions but also soil properties, we are confident that this study can serve as  blueprint to assess shifts in land-use also in other savannah systems. </p>


Author(s):  
Alex Colyer ◽  
Adrian Butler ◽  
Denis Peach ◽  
Andrew Hughes

AbstractA novel investigation of the impact of meteorological and geological heterogeneity within the Permo-Triassic Sandstone aquifers of the River Eden catchment, Cumbria (UK), is described. Quantifying the impact of heterogeneity on the water cycle is increasingly important to sustainably manage water resources and minimise flood risk. Traditional investigations on heterogeneity at the catchment scale require a considerable amount of data, and this has led to the analysis of available time series to interpret the impact of heterogeneity. The current research integrated groundwater-level and meteorological time series in conjunction with aquifer property data at 11 borehole locations to quantify the impact of heterogeneity and inform the hydrogeological conceptual understanding. The study visually categorised and used seasonal trend decomposition by LOESS (STL) on 11 groundwater and meteorological time series. Decomposition components of the different time series were compared using variance ratios. Though the Eden catchment exhibits highly heterogeneous rainfall distribution, comparative analysis at borehole locations showed that (1) meteorological drivers at borehole locations are broadly homogeneous and (2) the meteorological drivers are not sufficient to generate the variation observed in the groundwater-level time series. Three distinct hydrogeological regimes were identified and shown to coincide with heterogeneous features in the southern Brockram facies, which is the northern silicified region of the Penrith Sandstone and the St Bees Sandstone. The use of STL analysis in combination with detailed aquifer property data is a low-impact insightful investigative tool that helps guide the development of hydrogeological conceptual models.


2018 ◽  
Vol 34 (1) ◽  
pp. 3-9
Author(s):  
M. S. Abrashkin ◽  
A. A. Vershinin

The article analyzes the market of computer technologies. The theoretical substantiation of the scientific category «digital economy» and its economic components was given. Identified patterns of development of the domestic economy on the basis of informatization, the change of technological paradigms and the dynamics of industrial production. Based on the materials of the automotive industry, the influence of the digital economy on the internal industrial and technological structure of the industry and the results of its activities was proved. Also, the paper presents the main problems of sustainable industrial development in the context of socio-technical and economic means of developing science and technology in Russia.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Haireti Alifu ◽  
Dai Yamazaki ◽  
Yukiko Imada ◽  
Hideo Shiogama ◽  
...  

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.


2021 ◽  
Vol 13 (11) ◽  
pp. 2041
Author(s):  
Lisa Milani ◽  
Norman B. Wood

Falling snow is a key component of the Earth’s water cycle, and space-based observations provide the best current capability to evaluate it globally. The Cloud Profiling Radar (CPR) on board CloudSat is sensitive to snowfall, and other satellite missions and climatological models have used snowfall properties measured by it for evaluating and comparing against their snowfall products. Since a battery anomaly in 2011, the CPR has operated in a Daylight-Only Operations (DO-Op) mode, in which it makes measurements primarily during only the daylit portion of its orbit. This work provides estimates of biases inherent in global snowfall amounts derived from CPR measurements due to this shift to DO-Op mode. We use CloudSat’s snowfall measurements during its Full Operations (Full-Op) period prior to the battery anomaly to evaluate the impact of the DO-Op mode sampling. For multi-year global mean values, the snowfall fraction during DO-Op changes by −10.16% and the mean snowfall rate changes by −8.21% compared with Full-Op. These changes are driven by the changes in sampling in DO-Op and are very little influenced by changes in meteorology between the Full-Op and DO-Op periods. The results highlight the need to sample consistently with the CloudSat observations or to adjust snowfall estimates derived from CloudSat when using DO-Op data to evaluate other precipitation products.


Sign in / Sign up

Export Citation Format

Share Document