scholarly journals Analyses of Open Security Issues for Smart Home and Sensor Network Based on Internet of Things

2022 ◽  
Author(s):  
Jung Tae (Steve) Kim

A lot of communication are developed and advanced with different and heterogeneous communication techniques by integration of wireless and wire connection. Conventional technology is mainly focus on information technology based on computer techniques in the field of industry, manufacture and automation fields. It consists of individual skill and technique. As new technologies are developed and enhanced with conventional techniques, a lot of new application is emerged and merged with previous mechanism and skills. The representative application is internet of things services and applications. Internet of things is breakthrough technologies and one of the innovation industries which are called 4 generation industry revolution. Many different types of object and devices are embedded in sensor node. They are inter-connected with optimized open system interconnection protocol over internet, wireless and wire medium. Most of communication is fully inter-connected with conventional techniques at point to point and end to application in general. Most of information in internet of things is weak against attack. This may induce vulnerable features to unauthorized and outside attacker over internet protocol, Bluetooth, Wi-Fi, and so forth. As high and low efficient equipment are merged into heterogeneous infrastructure, IoT communication surroundings has become more complex, Due to limited resources in IoT such as small memory, low power and computing power, IoT devices are vulnerable and disclosed with security problems. In this chapter, we analyzed security challenges and threats based on smart home network under IoT service.

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2647
Author(s):  
Stefan Balogh ◽  
Ondrej Gallo ◽  
Roderik Ploszek ◽  
Peter Špaček ◽  
Pavol Zajac

Internet of Things connects the physical and cybernetic world. As such, security issues of IoT devices are especially damaging and need to be addressed. In this treatise, we overview current security issues of IoT with the perspective of future threats. We identify three main trends that need to be specifically addressed: security issues of the integration of IoT with cloud and blockchains, the rapid changes in cryptography due to quantum computing, and finally the rise of artificial intelligence and evolution methods in the scope of security of IoT. We give an overview of the identified threats and propose solutions for securing the IoT in the future.


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


JMIR Aging ◽  
10.2196/21964 ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. e21964
Author(s):  
Yong K Choi ◽  
Hilaire J Thompson ◽  
George Demiris

Background The Internet-of-Things (IoT) technologies can create smart residences that integrate technology within the home to enhance residents’ safety as well as monitor their health and wellness. However, there has been little research on real-world testing of IoT smart home devices with older adults, and the feasibility and acceptance of such tools have not been systematically examined. Objective This study aims to conduct a pilot study to investigate the feasibility of using IoT smart home devices in the actual residences of older adults to facilitate healthy aging. Methods We conducted a 2-month feasibility study on community-dwelling older adults. Participants chose among different IoT devices to be installed and deployed within their homes. The IoT devices tested varied depending on the participant’s preference: a door and window sensor, a multipurpose sensor (motion, temperature, luminosity, and humidity), a voice-operated smart speaker, and an internet protocol (IP) video camera. Results We recruited a total of 37 older adults for this study, with 35 (95%) successfully completing all procedures in the 2-month study. The average age of the sample was 78 (SD 9) years and primarily comprised women (29/37, 78%), those who were educated (31/37, 86%; bachelor’s degree or higher), and those affected by chronic conditions (33/37, 89%). The most widely chosen devices among the participants were multipurpose sensors and smart speakers. An IP camera was a significantly unpopular choice among participants in both phases. The participant feedback suggests that perceived privacy concerns, perceived usefulness, and curiosity to technology were strong factors when considering which device to have installed in their home. Conclusions Overall, our deployment results revealed that the use of IoT smart home devices is feasible in actual residences of older adults. These findings may inform the follow-up assessment of IoT technologies and their impact on health-related outcomes and advance our understanding of the role of IoT home-based monitoring technologies to promote successful aging-in-place for older adults. Future trials should consider older adults’ preferences for the different types of smart home devices to be installed in real-world residential settings.


2020 ◽  
Vol 8 (6) ◽  
pp. 5021-5027

Internet of Things (IoT) growing at a rate of exponential numbers in recent years has received extensive attention with BlockChain (BC) technology which provide trust to IoT with its immutable nature, decentralization in computing, resource constraints, security and privacy. The distributed ledger of transactions in BC is path leading technology for addressing Cyber Threats in the form of data theft; it provides secure application architecture which has proven track of record for securing data. IoT devices using BC enabled to communicate between objects, share data, decide based on business criteria and act as a medium to securely transmit information. This work provides lightweight BlockChain with two prominent consensus mechanism PoW – Proof of Work and PoS – Proof of Stake for smart IoT devices. Next, Smart Home Device (SMD) is ensures providing best-in-class Security and Privacy for smart home Appliances. Further provides future advances in the Approach.


2020 ◽  
Vol 1 (2) ◽  
pp. 66-74
Author(s):  
Lita Lidyawati ◽  
Lucia Jambola ◽  
Arsyad Ramadhan Darlis ◽  
Lisa Kristiana ◽  
Ratna Susana

Nowadays, security and gardening systems in densely populated residential areas are generally done manually. The security system in housing sometimes places security posts at street corners that are some distance from citizen’s homes thus they cannot be monitored at all times. Whereas other problem of watering system in citizen’s homes, someone has to water the plants one by one that it is not efficient in  energy, time and water availability thus that it can reduce the quality of the plants. Internet of Things (IoT) is a concept and method for remote control, monitoring, and various tasks. IoT is connected to a network that it can be accessed anywhere which can make things easier. IoT can be used to solve various problems. One of them is security issues and gardening activities. By using smart home technology, the security system is carried out by placing CCTV (Closed Circuit Television) which can be accessed by the home owner, anytime and anywhere the home owner is located. On the other hand, gardening is one of the most popular hobbies. In this field, IoT can be used to monitor and regulate various things to support gardening activities. In this community service activity, we are proposed a simple automatic gardening system for watering some plants programmatically in Pondok Hijau Indah residence. The system also allows manual human intervention either locally or remotely via the internet to control CCTV and water pumps. To build this smart Home system we will use the Xiaomi Home application from Google Play. In this application, we can set a program to control CCTV and water the plants every day at a certain time periodically, in this case, we set every 7 hours to watering the plants. 


2019 ◽  
Vol 1 (2) ◽  
pp. 16 ◽  
Author(s):  
Deepak Choudhary

The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity  of  IoT  applications and devices and their large-scale deployment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yizhen Sun ◽  
Jianjiang Yu ◽  
Jianwei Tian ◽  
Zhongwei Chen ◽  
Weiping Wang ◽  
...  

Security issues related to the Internet of Things (IoTs) have attracted much attention in many fields in recent years. One important problem in IoT security is to recognize the type of IoT devices, according to which different strategies can be designed to enhance the security of IoT applications. However, existing IoT device recognition approaches rarely consider traffic attacks, which might change the pattern of traffic and consequently decrease the recognition accuracy of different IoT devices. In this work, we first validate by experiments that traffic attacks indeed decrease the recognition accuracy of existing IoT device recognition approaches; then, we propose an approach called IoT-IE that combines information entropy of different traffic features to detect traffic anomaly. We then enhance the robustness of IoT device recognition by detecting and ignoring the abnormal traffic detected by our approach. Experimental evaluations show that IoT-IE can effectively detect abnormal behaviors of IoT devices in the traffic under eight different types of attacks, achieving a high accuracy value of 0.977 and a low false positive rate of 0.011. It also achieves an accuracy of 0.969 in a multiclassification experiment with 7 different types of attacks.


Author(s):  
Dan-Radu Berte

Abstract IoT, or the Internet of Things, has been in use since circa 1999. It defines a next chapter in the evolution of the Internet where computing devices embedded in everyday objects are able to send and receive data themselves. In recent years miniaturization and economies of scale brought a boon of new devices to the consumer and enterprise market, prompting Gartner to predict over 20bln live IoT devices by 2020. However, the definition of IoT is loose and, for the purpose of predicting trends or discussing security, formulating a clear understanding of the term is crucial. In fact, Internet of Things is a term only mostly used by the media, academia and the industry. Customers in the consumer space refer to the technologies by their benefit describing term of “Smart Home”. A quick analysis of this gap shows how it’s entirely possible no knowledge permeates the business and market worlds because of the incompatible terms used. As more devices, OSes and heterogeneous platforms entrench the concept of a new digital lifestyle, the new “Digital Kingdom” opens its doors to radical disruption, such as the latest massive Mirai and Reaper attacks. Our ability to correctly define the IoT, it’s platforms and components, should lead to better market dynamics and better preparedness, as one can’t secure something that can’t be defined. This paper proposes to further understand the IoT by exploring available definitions, reiterating misuse and equivocal perception, concluding with a more suiting, contemporary definition.


Internet-of-Things (IoT) has been considered as a fundamental part of our day by day existence with billions of IoT devices gathering information remotely and can interoperate within the current Internet framework. Fog computing is nothing but cloud computing to the extreme of network security. It provides computation and storage services via CSP (Cloud Service Provider) to end devices in the Internet of Things (IoT). Fog computing allows the data storing and processing any nearby network devices or nearby cloud endpoint continuum. Using fog computing, the designer can reduce the computation architecture of the IoT devices. Unfortunitily, this new paradigm IoT-Fog faces numerous new privacy and security issues, like authentication and authorization, secure communication, information confidentiality. Despite the fact that the customary cloud-based platform can even utilize heavyweight cryptosystem to upgrade security, it can't be performed on fog devices drectly due to reseource constraints. Additionally, a huge number of smart fog devices are fiercely disseminated and situated in various zones, which expands the danger of being undermined by some pernicious gatherings. Trait Based Encryption (ABE) is an open key encryption conspire that enables clients to scramble and unscramble messages dependent on client qualities, which ensures information classification and hearty information get to control. Be that as it may, its computational expense for encryption and unscrambling stage is straightforwardly corresponding to the multifaceted nature of the arrangements utilized. The points is to assess the planning, CPU burden, and memory burden, and system estimations all through each phase of the cloud-to-things continuum amid an analysis for deciding highlights from a finger tapping exercise for Parkinson's Disease patients. It will be appeared there are confinements to the proposed testbeds when endeavoring to deal with upwards of 35 customers at the same time. These discoveries lead us to a proper conveyance of handling the leaves the Intel NUC as the most suitable fog gadget. While the Intel Edison and Raspberry Pi locate a superior balance at in the edge layer, crossing over correspondence conventions and keeping up a self-mending network topology for "thing" devices in the individual territory organize.


Sign in / Sign up

Export Citation Format

Share Document