scholarly journals Phenolic Compounds in the Built Environment

2021 ◽  
Author(s):  
Elham H. Fini ◽  
Shakiba Ayat ◽  
Farideh Pahlavan

This chapter examines source and application of phenolic compounds in the built environment as well as their environmental fate and treatment methods. We further describe the role of phenolic compounds in delaying aging and degradation of outdoor construction elements when exposed to intense solar radiation. In this chapter both plant-based and synthetic sources of phenolic compounds and their fate in the environment were examined. In addition, merits of select sources of phenolic compounds to resist ultraviolet radiation in composites as well as delaying degradation were studied. This chapter further provides insights pertaining to the underlying molecular interactions which afford phenol’s role as an anti-aging additive for outdoor construction elements. This in turn provides a solution to promote bio-economy and enhance sustainability in the built environment.


2015 ◽  
Vol 4 (2) ◽  
pp. 113-135
Author(s):  
Lucila Mallart

This article explores the role of visuality in the identity politics of fin-de-siècle Catalonia. It engages with the recent reevaluation of the visual, both as a source for the history of modern nation-building, and as a constitutive element in the emergence of civic identities in the liberal urban environment. In doing so, it offers a reading of the mutually constitutive relationship of the built environment and the print media in late-nineteenth century Catalonia, and explores the role of this relation as the mechanism by which the so-called ‘imagined communities’ come to exist. Engaging with debates on urban planning and educational policies, it challenges established views on the interplay between tradition and modernity in modern nation-building, and reveals long-term connections between late-nineteenth-century imaginaries and early-twentieth-century beliefs and practices.



2020 ◽  
pp. 64-70
Author(s):  
Anastasiya Laknitskaya

Currently, one of the priority medical and social problems is the optimization of treatment methods for pyoderma associated with Streptococcus pyogenes — group A streptococcus (GAS). To date, the proportion of pyoderma, the etiological factor of which is Streptococcus pyogenes, is about 6 % of all skin diseases and is in the range from 17.9 to 43.9 % of all dermatoses. Role of the bacterial factor in the development of streptococcal pyoderma is obvious. Traditional treatment complex includes antibacterial drugs selected individually, taking into account the antibiotic sensitivity of pathognomonic bacteria, and it is not always effective. Currently implemented immunocorrection methods often do not take into account specific immunological features of the disease, the individual, and the fact that the skin performs the function of not only a mechanical barrier, but it is also an immunocompetent organ. Such an approach makes it necessary to conduct additional studies clarifying the role of factors of innate and adaptive immunity, intercellular mediators and antioxidant defense system, that allow to optimize the treatment of this pathology.



2014 ◽  
Vol 15 (4) ◽  
pp. 409-421 ◽  
Author(s):  
Samineh Jafari ◽  
Soodabeh Saeidnia ◽  
Mohammad Abdollahi


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Melissa Chalada ◽  
Charmaine A. Ramlogan-Steel ◽  
Bijay P. Dhungel ◽  
Christopher J. Layton ◽  
Jason C. Steel

Uveal melanoma (UM) is currently classified by the World Health Organisation as a melanoma caused by risk factors other than cumulative solar damage. However, factors relating to ultraviolet radiation (UVR) susceptibility such as light-coloured skin and eyes, propensity to burn, and proximity to the equator, frequently correlate with higher risk of UM. These risk factors echo those of the far more common cutaneous melanoma (CM), which is widely accepted to be caused by excessive UVR exposure, suggesting a role of UVR in the development and progression of a proportion of UM. Indeed, this could mean that countries, such as Australia, with high UVR exposure and the highest incidences of CM would represent a similarly high incidence of UM if UVR exposure is truly involved. Most cases of UM lack the typical genetic mutations that are related to UVR damage, although recent evidence in a small minority of cases has shown otherwise. This review therefore reassesses statistical, environmental, anatomical, and physiological evidence for and against the role of UVR in the aetiology of UM.



2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gerry K. Schwalfenberg

This paper looks at the environmental role of vitamin D and solar radiation as risk reduction factors in autoimmune disease. Five diseases are considered: multiple sclerosis, type 1 diabetes, rheumatoid arthritis, autoimmune disease of the thyroid, and inflammatory bowel disease. Clinical relevant studies and factors that may indicate evidence that autoimmune disease is a vitamin D-sensitive disease are presented. Studies that have resulted in prevention or amelioration of some autoimmune disease are discussed. An example of the utility of supplementing vitamin D in an unusual autoimmune disease, idiopathic thrombocytic purpura, is presented.



Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2349
Author(s):  
Alain Salvador Conejo-Dávila ◽  
Marco Armando Moya-Quevedo ◽  
David Chávez-Flores ◽  
Alejandro Vega-Rios ◽  
Erasto Armando Zaragoza-Contreras

The development of anilinium 2-acrylamide-2-methyl-1-propanesulfonate (Ani-AMPS) monomer, confirmed by 1H NMR, 13C NMR, and FTIR, is systematically studied. Ani-AMPS contains two polymerizable functional groups, so it was submitted to selective polymerization either by free-radical or oxidative polymerization. Therefore, poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonic) [Poly(Ani-AMPS)] and polyaniline doped with 2-acrylamide-2-methyl-1-propanesulfonic acid [PAni-AMPS] can be obtained. First, the acrylamide polymer, poly(Ani-AMPS), favored the π-stacking of the anilinium group produced by the inter- and intra-molecular interactions and was studied utilizing 1H NMR, 13C NMR, FTIR, and UV-Vis-NIR. Furthermore, poly(Ani-AMPS) fluorescence shows quenching in the presence of Fe2+ and Fe3+ in the emission spectrum at 347 nm. In contrast, the typical behavior of polyaniline is observed in the cyclic voltammetry analysis for PAni-AMPS. The optical properties also show a significant change at pH 4.4. The PAni-AMPS structure was corroborated through FTIR, while the thermal properties and morphology were analyzed utilizing TGA, DSC (except PAni-AMPS), and FESEM.



Sign in / Sign up

Export Citation Format

Share Document