scholarly journals Comparative Study of Cellulose Hydrogel Films Prepared from Various Biomass Wastes

2021 ◽  
Author(s):  
Cho Cho ◽  
Thinzar Aye ◽  
Aung Khaing ◽  
Takaomi Kobayashi

The conversion of biomass waste products to valuable products like cellulose hydrogel films is important in cell regeneration. In this study, the various biomass wastes: thanaka heartwood (TH), sugarcane bagasse (SB) and rice straw (RS) were used as cellulose resources. They were chemically treated using acid and alkali to obtain cellulose fibers. The yield percent of cellulose fibers depends on the nature of biomass materials. Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analyses showed that the amount of lignin and hemicellulose from these samples were successfully reduced by chemical treatment. Cellulose fibers were treated using the dimethylacetamide/lithium chloride (DMAc/LiCl) system to obtain cellulose hydrogel solutions. Following this, the cellulose hydrogel films were prepared employing the phase inversion method without cross-linker. These films were transparent and flexible. In the present study, water retainable property and viscoelasticity of cellulose hydrogel films were measured. Antimicrobial activity tests of cellulose solutions have been carried out to be utilized to hydrogel films for biomedical application.

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Zawati Harun ◽  
Mohd Riduan Jamalludin ◽  
Hatijah Basri ◽  
Muhamad Fikri Shohur ◽  
Nurafiqah Rosman ◽  
...  

This study investigates the effects of synthetic silica(SiO2)with different weight percentage concentrations on the morphology and performance of the polysulfone (PSf) and polyethelene glycol (PEG) based membrane ultrafiltration (UF). Phase inversion method was used to prepare PSf/PEG ultrafiltration (UF) flatsheet membrane. SiO2 and N-Methyl 2 Pyrrolidone (NMP) were used as an additive and solvent respectively. The fabricated membrane was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and the performances of the membranes were measured in term of pure water flux by using distilled water and solute rejection at different wastewater concentration at 50%, 75% and 87.5%. The result showed that the addition of 2% silica in the dope solution increased the permeation in terms pure water flux and the best rejection with 62 Lm-2 h-1 and 89% (at 87.5 % waste water dilution) respectively


2019 ◽  
Vol 69 (2) ◽  
pp. 122-133 ◽  
Author(s):  
Juan Xiong ◽  
Yexia Gong ◽  
Cong Ma ◽  
Xingtao Zuo ◽  
Jiajie He

Abstract The hydrophilic and antimicrobial polyvinylidene fluoride (PVDF) membrane was fabricated by phase inversion method. The prepared membranes with various concentrations of ZnO nanoparticles (NPs) were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and membrane properties were investigated in terms of hydrophilicity, water flux, BSA solution filtration experiments, etc. Antibacterial testing was also performed to examine the practicability of the PVDF-ZnO membranes in overcoming biofouling. The results of FTIR and XRD confirmed the presence of ZnO NPs in the polymer matrix. The membrane performance demonstrated the significance of hydrophilic nanoparticles towards the enhancement of membrane properties. The optimum amount of ZnO NPs was 1.5 wt% with a lower contact angle as well as highest flux and lowest filtration resistance. The presence of ZnO NPs in the membrane matrix exhibited a strong antibacterial activity increased with the increasing ZnO NPs' content. Incorporation of ZnO NPs into PVDF membranes may have great potential in developing high-performance antifouling membranes for separation process.


2019 ◽  
Vol 52 (4) ◽  
pp. 337-355
Author(s):  
Nuttida Srirachya ◽  
Kanoktip Boonkerd ◽  
Takaomi Kobayashi

This report describes progress in the development of cellulose hydrogel by blending with natural rubber (NR). Cellulose regenerated from the bagasse sugarcane was used for this study. Although cellulose and NR have a considerably low mutual affinity, composite hydrogels with various cellulose and NR contents were prepared using a wet-phase inversion method. The maximum amount of NR that can be loaded into the cellulose hydrogel was about 30% vol. Once NR is introduced into the cellulose hydrogels, the obtained hydrogel became translucent and eventually opaque with increasing NR loading. Measurements of water absorption, the water contact angle, and evaluation of fourier-transform infrared spectroscopoy (FTIR) spectra revealed that the presence of NR decreases the water affinity of the hydrogels. Nevertheless, it is noteworthy that the composite hydrogels had higher tensile strength and better elastic properties than the pristine hydrogel. The results showed that the obtained composite hydrogels can be elongated several times to their original length. The enhancement of both properties was proportional to the amount of NR included. Results of scanning electron microscope (SEM) images showed NR present inside the hollow of the cellulose hydrogel, forming interconnected domains. One can infer that the increase of mechanical and elastic properties is attributable to the presence of these interconnected structures.


2016 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Roro Ernia Prawithasari ◽  
Ilma Fadilah ◽  
Mudjijono Mudjijono ◽  
Teguh Endah Saraswati ◽  
Dwidjono Hadi Darwanto

<p>Study of synthesis and effectiveness of membrane catalyst of cellulose acetate/nata de coco-TiO<sub>2 </sub>nano (CA/NDC-TiO<sub>2</sub> nano) in photodegradation of methylene blue in batch system has been investigated. TiO<sub>2</sub>nanoparticles were synthesized by hydrothermal method followed by calcination at 450<sup>o</sup>C. Scanning Electron Microscopy (SEM) images indicate nano TiO<sub>2</sub> has been successfully synthesized with average particle diameter as 88,63±4,37 nm.  X-ray diffraction pattern (XRD) of nano TiO<sub>2</sub>  shows some characteristic peaks of anatase TiO<sub>2</sub> were still existed. Membrane photocatalyst of CA/NDC- nano TiO<sub>2</sub> was prepared via phase inversion method by mixing TiO<sub>2</sub> nanoparticles with CA casting solution. Thermogravimetric analysis shows three decomposition steps of CA/NDC-nano membrane as well as CA/NDC membrane. Photodegradation of methylene blue was conducted with nano-TiO<sub>2</sub>  particles and CA/NDC-TiO<sub>2</sub> membrane for 50 minutes in batch system. The absorbance changes were measured by spectrophotometer at wavelength of 664.6 nm. The result shows the photodegradation rections tended to follow second order reaction. According to the rate constant value, <em>k</em>, the photocatalytic effectivity using CA-NDC/nano TiO<sub>2</sub> membrane and nano TiO<sub>2</sub>photocatalysts in metilen blue photodegradation, statistically were not significantly different.</p>


2015 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Roro Ernia Prawithasari ◽  
Ilma Fadilah ◽  
Mudjijono Mudjijono ◽  
Teguh Endah Saraswati ◽  
Dwidjono Hadi Darwanto

<p>Study of synthesis and effectiveness of membrane catalyst of cellulose acetate/nata de coco-TiO<sub>2 </sub>nano (CA/NDC-TiO<sub>2</sub> nano) in photodegradation of methylene blue in batch system has been investigated. TiO<sub>2</sub>nanoparticles were synthesized by hydrothermal method followed by calcination at 450<sup>o</sup>C. Scanning Electron Microscopy (SEM) images indicate nano TiO<sub>2</sub> has been successfully synthesized with average particle diameter as 88,63±4,37 nm.  X-ray diffraction pattern (XRD) of nano TiO<sub>2</sub>  shows some characteristic peaks of anatase TiO<sub>2</sub> were still existed. Membrane photocatalyst of CA/NDC- nano TiO<sub>2</sub> was prepared via phase inversion method by mixing TiO<sub>2</sub> nanoparticles with CA casting solution. Thermogravimetric analysis shows three decomposition steps of CA/NDC-nano membrane as well as CA/NDC membrane. Photodegradation of methylene blue was conducted with nano-TiO<sub>2</sub>  particles and CA/NDC-TiO<sub>2</sub> membrane for 50 minutes in batch system. The absorbance changes were measured by spectrophotometer at wavelength of 664.6 nm. The result shows the photodegradation rections tended to follow second order reaction. According to the rate constant value, <em>k</em>, the photocatalytic effectivity using CA-NDC/nano TiO<sub>2</sub> membrane and nano TiO<sub>2</sub>photocatalysts in metilen blue photodegradation, statistically were not significantly different.</p>


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1686 ◽  
Author(s):  
Aline M. F. Linhares ◽  
Cristiano P. Borges ◽  
Fabiana V. Fonseca

Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.% polyethersulfone and 7.5 wt.% polyvinylpyrrolidone in N,N-dimethylacetamide) were prepared by phase inversion method, and silver nanoparticles were deposited on their surface by the physical technique of vapor deposition in a sputtering chamber. The membranes were characterized by Field Emission Scanning Electron Microscopy, and the presence of silver was investigated by Energy-Dispersive Spectroscopy and X-ray Diffraction. Experiments of silver leaching were carried out through immersion and filtration tests. After 10 months of immersion in water, the membranes still presented ~90% of the initial silver, which confirms the efficiency of the sputtering technique. Moreover, convective experiments indicated that 98.8% of silver remained in the membrane after 24 h of operation. Biocidal analyses (disc diffusion method and biofouling resistance) were performed against Pseudomonas aeruginosa and confirmed the antibacterial activity of these membranes with 0.6 and 0.7 log reduction of viable planktonic and sessile cells, respectively. These results indicate the great potential of these new membranes to reduce biofouling effects.


2014 ◽  
Vol 775-776 ◽  
pp. 173-177 ◽  
Author(s):  
Elieber Barros Bezerra ◽  
A.M.D. Leite ◽  
E.M. Araújo ◽  
T.J.A. Melo ◽  
C.T. Cunha ◽  
...  

Polymer blend is the name for the physical mixture of two or more polymers and/or copolymers, and this allows the obtention of new materials with superior properties to those of the pure components. The blends have been used in obtaining membranes in order to improve the barrier properties so that it can separate two phases totally or partially, restricting the transport of one or more chemical species. In this work, polymer membranes were obtained from blends of PA6/PPgAA and PA6/PP/PPgAA by phase inversion method and were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was observed through the diffractograms that there were no significant variations in the characteristic peaks of PA6, and through SEM, it was observed the formation of microporous asymmetric membranes, where they showed a surface with higher porosity to the binary and ternary blends and presented smallest pore diameter for binary blends.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Author(s):  
Yuxin Pan ◽  
Kai Pei ◽  
Yucun Zhou ◽  
Tong Liu ◽  
Meilin Liu ◽  
...  

A straight, open and macro-porous Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3 fuel electrode-supported protonic ceramic electrochemical cell has been fabricated by a modified phase-inversion method.


Sign in / Sign up

Export Citation Format

Share Document