scholarly journals Ciliates as Symbionts

2021 ◽  
Author(s):  
Rosaura Mayén-Estrada ◽  
Roberto Júnio Pedroso Dias ◽  
Mireya Ramírez-Ballesteros ◽  
Mariana Rossi ◽  
Margarita Reyes-Santos ◽  
...  

Although many ciliates are free-living, more than 140 families of ciliates (Alveolata, Ciliophora) include symbiotic species of animals. Symbiosis, defined as an interaction between two species, is analyzed in this chapter to show a wide diversity of symbiotic systems in ciliates (epibiosis, commensalism, mutualism, and parasitism), providing some data about ciliate strategies showing their success as symbionts. Some species are free-living as well symbionts, facultative symbionts, and obligate symbionts. Analysis of reconstructions of ancestral state evidence that the parasitism arose numerous times and independently among the lineages of ciliates. At least three evolutionary routes can be traced: (1) transition from free-living to mutualism and parasitism, (2) transition from free-living to parasitism, and (3) regression from parasitism to free-living. The evolution of the symbiosis in ciliates demonstrates a higher diversification rate concerning free-living ciliates. The analysis of the evolution of the life cycles complexity, exploring molecular data of the phases of the ciliate cycle in their hosts is also essential. We propose new approaches for an integrative study of symbiotic ciliates.

2014 ◽  
Vol 281 (1775) ◽  
pp. 20132146 ◽  
Author(s):  
Joel L. Sachs ◽  
Ryan G. Skophammer ◽  
Nidhanjali Bansal ◽  
Jason E. Stajich

Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial–eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34–39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sharon Towett-Kirui ◽  
Jennifer L. Morrow ◽  
Markus Riegler

AbstractInsect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marc Gottschling ◽  
Maria Consuelo Carbonell-Moore ◽  
Kenneth Neil Mertens ◽  
Monika Kirsch ◽  
Malte Elbrächter ◽  
...  

AbstractDinophyte evolution is essentially inferred from the pattern of thecal plates, and two different labelling systems are used for the important subgroups Gonyaulacales and Peridiniales. The partiform hypotheca of cladopyxidoid dinophytes fits into the morphological concepts of neither group, although they are assigned to the Gonyaulacales. Here, we describe the thecate dinophyte Fensomea setacea, gen. & sp. nov., which has a cladopyxidoid tabulation. The cells displayed a Kofoidean plate formula APC, 3′, 4a, 7″, 7C, 6S, 6′′′, 2′′′′, and slender processes were randomly distributed over the echinate or baculate surface. In addition, we obtained rRNA sequences of F. setacea, gen. & sp. nov., but dinophytes that exhibit a partiform hypotheca did not show a close relationship to Gonyaulacales. Character evolution of thecate dinophytes may have progressed from the ancestral state of six postcingular plates, and two more or less symmetrically arranged antapical plates, towards patterns of only five postcingular plates (Peridiniales) or more asymmetrical configurations (Gonyaulacales). Based on our phylogenetic reconsiderations the contact between the posterior sulcal plate and the first postcingular plate, as well as the contact between an antapical plate and the distalmost postcingular plate, do not represent a rare, specialized gonyaulacoid plate configuration (i.e., the partiform hypotheca of cladopyxidoid dinophytes). Instead, these contacts correspond to the common and regular configuration of peridinioid (and other) dinophytes.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


2021 ◽  
pp. 269-278
Author(s):  
M. Lenguas Francavilla ◽  
L. Negrete ◽  
A. Martínez-Aquino ◽  
C. Damborenea ◽  
F. Brusa

Girardia Ball, 1974 is the most diverse and widely distributed genus of the family Dugesiidae (Platyhelminthes: Continenticola) in the Neotropical region. Seven out of the 52 species of the genus are known for Argentina. The Somuncurá Plateau is a region in northern Patagonia with several endemic flora and fauna, but little is known about the free-living Platyhelminthes. We describe two new species of Girardia partially inhabiting in sympatry in the Somuncurá Plateau: Girardia somuncura sp. nov. and Girardia tomasi sp. nov. The identification criteria that we followed was an integrative taxonomic approach based on morphological and molecular data. Thus, we used anatomical features focused on the reproductive system, together with a phylogenetic analysis, using a mitochondrial (COI barcode region) genetic marker. This study is the first phylogenetic analysis of the genus Girardia in which we include the southernmost representatives of America here described, thus making it possible to incorporate them in global phylogenies.


Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


2018 ◽  
Author(s):  
Jürgen F. H. Strassert ◽  
Elisabeth Hehenberger ◽  
Javier del Campo ◽  
Noriko Okamoto ◽  
Martin Kolisko ◽  
...  

ABSTRACTSpores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium to analyse the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 59
Author(s):  
Camila Pantoja ◽  
Anna Faltýnková ◽  
Katie O’Dwyer ◽  
Damien Jouet ◽  
Karl Skírnisson ◽  
...  

The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. The number of echinostome species in different hosts did not vary greatly and ranged from one to three species. Of these 14 trematode species, we discovered four species (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, and Echinostomatidae gen. sp.) as novel in Europe; we provide descriptions for the newly recorded species and those not previously associated with DNA sequences. Two species from Iceland (Neopetasiger islandicus and Echinoparyphium sp. 2) were recorded in both Iceland and North America. All species found in Ireland are new records for this country. Via an integrative taxonomic approach taken, both morphological and molecular data are provided for comparison with future studies to elucidate many of the unknown parasite life cycles and transmission routes. Our reports of species distributions spanning Europe and North America highlight the need for parasite biodiversity assessments across large geographical areas.


2021 ◽  
Author(s):  
Ben Schultz

Free-living parasite stages are important but often overlooked components of ecosystems, especially their role(s) in food webs. Trematode parasites have complex life cycles that include a motile transmission phase, cercariae, that are produced in great quantities within aquatic snail hosts and join the zooplankton community after emerging. Here I examined how cercariae presence affected the population abundance of a common freshwater zooplanktonic animal (Daphnia) when predators were present. I also sought to determine the pathways taken by cercariae-derived carbon within a model freshwater food web by using the stable isotope 13C as a tracer. I found that Daphnia population abundance positively benefitted from cercariae presence when larval dragonfly predators were present, serving as alternate prey. I also found that 13C was an effective tool to track the flow of cercarial carbon, demonstrating high consumption by benthic consumers, as well as the utility of this method for use in future studies.


Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


Sign in / Sign up

Export Citation Format

Share Document