Broad Efficacy of Scavenging Free Radicals: Cordyceps sp.

2021 ◽  
Author(s):  
Loknath Deshmukh ◽  
Rajendra Singh ◽  
Sardul Singh Sandhu

Scavenging free radical potency of cordycepin is the major bioactive segment extricated from Cordyceps species. In some new years, Cordyceps has gotten growing thought inferable from its distinctive restorative/pharmacological tests. This assessment reviews continuous explores on the counter oxidant impacts and the associated analyses of Cordyceps species. The results from our review show that Cordyceps of the cordycepin applies protective effects against hostile to oxidant injury for certain, afflictions including constant obstructive pneumonic infection (COPD), hepatitis, asthma, cerebral paralysis, Parkinson’s illness (PD), coronary course sickness (CAD), Alzheimer illness, respiratory failure, malignancy infection, maturing, waterfalls, and mind brokenness. Cordyceps coordinates the NF-κB, RIP2/Caspase-1, Akt/GSK-3β/p70S6K, TGF-β/Smads, and Nrf2/HO-1 hailing pathways among others of cordycepin. A couple of assessments focusing in on Cordyceps auxiliaries were surveyed and found to down metabolic speed of Cordyceps and augmentation its bioavailability. In addition, cordycepin further developed opposition, prevented the duplication of viral RNA, and covered cytokine storms, therefore proposing its capacity to treat COVID-19 and other viral defilements. From the accumulated and assessed information, this article gives the speculative reason to the clinical usages of cordycepin and inspects the way for future assessments focusing in on expanding the restorative use of Cordyceps species. Cordycepin and its analogs show unfathomable potential as the accompanying new class of against oxidant specialists.

1990 ◽  
Vol 259 (1) ◽  
pp. H137-H143 ◽  
Author(s):  
M. Tani

The purpose of the present study was to determine whether the combined administration of superoxide dismutase (SOD) and catalase (CAT) or efforts to maintain the glutathione redox pathways with sulfhydryl agents could improve Na+ imbalance, reduce Ca2+ overload, and enhance recovery of function and metabolites upon reperfusion in isolated ischemic rat hearts, presumably by scavenging oxygen free radicals. After a 30-min exposure to zero-flow ischemia, left ventricular developed pressure (LVDP) and heart rate recovered to 31 and 81% of the preischemic value, respectively, ATP fell by approximately 40%, and 45Ca2+ uptake rose from 0.8 to 10.4 mumol/g dry tissue. A combination of SOD and CAT at low concentrations (5 X 10(4) and 7.5 X 10(4) U/l, respectively) had a beneficial effect on recovery of LVDP (to 59%), reperfusion 45Ca2+ uptake (to 7.9 mumol/g dry tissue), and recovery of Na+ imbalance. When sulfhydryl donors, such as glutathione, cysteine, N-acetyl-L-cysteine, or dithiothreitol, were administered 20 min before induction of ischemia, no significant protective effects were observed. These results indicated that the extracellular free radical scavengers, SOD and CAT, could attenuate partially the ionic imbalance in ischemic-reperfused myocardium and result in improved recovery of contractile function. Attempts to enhance the intrinsic scavenging system were not successful, suggesting that this system may not play an important role in disposing of free radicals.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1876
Author(s):  
Peter F. Surai ◽  
Katie Earle-Payne ◽  
Michael T. Kidd

Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15–20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau’s antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.


2012 ◽  
Vol 1 (10) ◽  
pp. 79 ◽  
Author(s):  
G. Raja* ◽  
Ivvala Anand Shaker ◽  
Inampudi Sailaja ◽  
R. Swaminathan ◽  
S. Saleem Basha ◽  
...  

Natural antioxidants can protect the human body from free radicals and retard the progress of many chronic diseases as well as lipid oxidative rancidity in foods. The role of antioxidants has protected effect against free radical damage that may cause many diseases including cancer. Primary sources of naturally occurring antioxidants are known as whole grains, fruits, and vegetables. Several studies suggest that regular consumption of nuts, mostly walnuts, may have beneficial effects against oxidative stress mediated diseases such as cardiovascular disease and cancer. The role of antioxidants has attracted much interest with respect to their protective effect against free radical damage that may cause many diseases including cancer. Juglans regia L. (walnut) contains antioxidant compounds, which are thought to contribute to their biological properties. Polyphenols, flavonoids and flavonols concentrations and antioxidant activity of Leaves, Stems and Nuts extract of Juglans regia L. as evaluated using DPPH, ABTS, Nitric acid, hydroxyl and superoxide radical scavenging activity, lipid peroxidation and total oxidation activity were determined. The antioxidant activities of Leaves, Stems and Nuts extract of Juglans regia L. were concentration dependent in different experimental models and it was observed that free radicals were scavenged by the test compounds in all the models.


1963 ◽  
Vol 41 (12) ◽  
pp. 2956-2961 ◽  
Author(s):  
M. Lynne Neufeld ◽  
Arthur T. Blades

The thermal reactions of ethylene oxide in the presence of an excess of propylene have been studied as a function of pressure and it has been found that there are two sets of products, acetaldehyde and free radicals, presumably methyl and formyl. These products are believed to arise from an excited acetaldehyde intermediate. Some evidence has been obtained for the occurrence of a surface-catalyzed rearrangement to acetaldehyde but the free radical products are uninfluenced by surface.


2021 ◽  
Author(s):  
Davy-Louis Versace ◽  
Louise Breloy ◽  
Yusuf Yagci ◽  
Ismail Yilmaz ◽  
Ozgur Yavuz

Phthalocyanines (Pcs) are interesting molecules offering a fascinating chemistry world which received tremendous interest in the last decade. Their certain features such as high thermal, chemical, and optical stability as...


1997 ◽  
Vol 82 (4) ◽  
pp. 1119-1125 ◽  
Author(s):  
G. S. Supinski ◽  
D. Stofan ◽  
R. Ciufo ◽  
A. Dimarco

Supinski, G. S., D. Stofan, R. Ciufo, and A. DiMarco. N-acetylcysteine administration alters the response to inspiratory loading in oxygen-supplemented rats. J. Appl. Physiol. 82(4): 1119–1125, 1997.—Based on recent studies, it has been suggested that free radicals are elaborated in the respiratory muscles during strenuous contractions and contribute to the development of muscle fatigue. If this theory is correct, then it should be possible to attenuate the development of diaphragm fatigue and/or delay the onset of respiratory failure during loaded breathing by administering a free radical scavenger. The purpose of the present experiment was, therefore, to examine the effect of N-acetylcysteine (NAC), a free radical scavenger and glutathione precursor, on the evolution of respiratory failure in decerebrate unanesthetized rats breathing against a large inspiratory resistive load. We compared the inspiratory volume and pressure generation over time in animals pretreated with either saline or NAC (150 mg/kg) and then loaded until respiratory arrest. After arrest, the diaphragm was excised, and samples were assayed for reduced (GSH) and oxidized glutathione. As a control, we also assessed respiratory function and glutathione concentrations in groups of nonloaded saline- and NAC-treated animals. We found that NAC-treated animals were able to tolerate loading better than the saline-treated group, maintaining higher inspiratory pressures and sustaining higher inspired volumes. Administration of NAC also increased the time that animals could tolerate loading before the development of respiratory arrest. In addition, although saline-treated loaded animals had significant reductions in diaphragmatic GSH levels compared with unloaded controls, the magnitude of this reduction was blunted by NAC administration (i.e., GSH averaged 965 ± 113, 568 ± 83, 907 ± 39, and 784 ± 61 nmol/g for unloaded-saline, loaded-saline, unloaded-NAC, and loaded-NAC groups, P< 0.05, with the value for the loaded-saline group lower than the values for the two unloaded groups; GSH for the loaded-NAC group was not different, however, from unloaded controls). These data demonstrate that administration of NAC, a free radical scavenger, slows the rate of development of respiratory failure during inspiratory resistive loading.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1089
Author(s):  
Acharya Balkrishna ◽  
Akansha Rohela ◽  
Abhishek Kumar ◽  
Ashwani Kumar ◽  
Vedpriya Arya ◽  
...  

Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.


1934 ◽  
Vol 30 (0) ◽  
pp. 17-17 ◽  
Author(s):  
A. Schönberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document