scholarly journals Strategies for Site-Specific Radiolabeling of Peptides and Proteins

2021 ◽  
Author(s):  
Ingrid Dijkgraaf ◽  
Stijn M. Agten ◽  
Matthias Bauwens ◽  
Tilman M. Hackeng

Although anatomical imaging modalities (X-ray, computed tomography (CT), magnetic resonance imaging (MRI)) still have a higher spatial resolution (0.1–1 mm) than molecular imaging modalities (single-photon emission computed tomography (SPECT), positron emission tomography (PET), optical imaging (OI)), the advantage of molecular imaging is that it can detect molecular and cellular changes at the onset of a disease before it leads to morphological tissue changes, which can be detected by anatomical imaging. During the last decades, noninvasive diagnostic imaging has encountered a rapid growth due to the development of dedicated imaging equipment for preclinical animal studies. In addition, the introduction of multimodality imaging (PET/CT, SPECT/CT, PET/MRI) which combines high-resolution conventional anatomical imaging with high sensitivity of tracer-based molecular imaging techniques has led to successful accomplishments in this exciting field. In this book chapter, we will focus on chemical synthesis techniques for site-specific incorporation of radionuclide chelators. Subsequently, radiolabeling based on complexation of a radionuclide with a chelator will be discussed, with focus on: diethylenetriaminepentaacetic acid (DTPA), 1,4,7,10-tetraazacyclododecane-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-triacetic acid (NOTA), hexa-histidine (His-tag), and 6-hydrazinonicotinic acid (HYNIC) that allow the production of peptides labeled with 18F, 68Ga, 99mTc, and 111In – the currently most widely used isotopes.

2019 ◽  
Vol 25 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Daryoush Shahbazi-Gahrouei ◽  
Pegah Moradi Khaniabadi ◽  
Saghar Shahbazi-Gahrouei ◽  
Amir Khorasani ◽  
Farshid Mahmoudi

Abstract Molecular imaging techniques using nanoparticles have significant potential to be widely used for the detection of various types of cancers. Nowadays, there has been an increased focus on developing novel nanoprobes as molecular imaging contrast enhancement agents in nanobiomedicine. The purpose of this review article is to summarize the use of a variety of nanoprobes and their current achievements in accurate cancer imaging and effective treatment. Nanoprobes are rapidly becoming potential tools for cancer diagnosis by using novel molecular imaging modalities such as Ultrasound (US) imaging, Computerized Tomography (CT), Single Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Optical Imaging. These imaging modalities may facilitate earlier and more accurate diagnosis and staging the most of cancers.


2010 ◽  
Vol 1 (1) ◽  
pp. 31-34
Author(s):  
Shubhasini A Raghavan

ABSTRACT Cancer is a scourge that affects millions of the world population. The incidence of oral cancer is alarmingly high in the Indian subcontinent. What is more appalling is the low survival rate of these patients. Various efforts are being made to bring about early diagnosis, accurate staging and aggressive treatment. Molecular imaging is one step in this direction. Today, imaging plays a role not just in detecting what is radiopaque and what is radiolucent, but also plays a very active role in detecting disease down to the level of a single cell. The field of molecular imaging has been defined as ‘the visualization, characterization, and measurement of biologic processes at molecular and cellular levels in humans and other living systems’. The amalgamation of advanced imaging techniques such as Positron Emission Tomography and Single Photon Emission Computed Tomography with Computed Tomography, the use of newer contrast agents, incorporation of nanoparticles all have brought about these revolutionary changes in imaging. The purpose of this article is to describe the various techniques used in molecular imaging specifically highlighting their application in head and neck cancer.


Author(s):  
Malgorzata Solnik ◽  
Natalia Paduszynska ◽  
Anna M. Czarnecka ◽  
Kamil J. Synoradzki ◽  
Yacoub A. Yousef ◽  
...  

Uveal melanoma is the most common primary intraocular malignancy in adults characterized by insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, biopsy followed by pathological exam is not recommended in ophthalmic oncology. Therefore, early and non-invasive diagnosis is essential to enhance patients’ chances for early treatment possibilities. We reviewed imaging modalities currently used in the diagnosis of uveal melanoma, i.e., fundus imaging, ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF). The principle of imaging techniques was briefly explained, along with their role in the diagnostic process and a summary of their advantages and limitations. Further, the experimental data and the advancements in imaging modalities were searched. We described their innovations, showed current usage and research, and explained the possibilities of utilizing them to diagnose uveal melanoma and their potential application in personalized medicine such as theranostics.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Aneesh K. Ramaswamy ◽  
Mark Hamilton ◽  
Rucha V. Joshi ◽  
Benjamin P. Kline ◽  
Rui Li ◽  
...  

Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics.In vivoimaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease.


2020 ◽  
Vol 26 (10) ◽  
pp. 1470-1484 ◽  
Author(s):  
Mariane Le Fur ◽  
Iris Y Zhou ◽  
Onofrio Catalano ◽  
Peter Caravan

Abstract Inflammatory bowel disease (IBD) is defined by a chronic relapsing and remitting inflammation of the gastrointestinal tract, with intestinal fibrosis being a major complication. The etiology of IBD remains unknown, but it is thought to arise from a dysregulated and excessive immune response to gut luminal microbes triggered by genetic and environmental factors. To date, IBD has no cure, and treatments are currently directed at relieving symptoms and treating inflammation. The current diagnostic of IBD relies on endoscopy, which is invasive and does not provide information on the presence of extraluminal complications and molecular aspect of the disease. Cross-sectional imaging modalities such as computed tomography enterography (CTE), magnetic resonance enterography (MRE), positron emission tomography (PET), single photon emission computed tomography (SPECT), and hybrid modalities have demonstrated high accuracy for the diagnosis of IBD and can provide both functional and morphological information when combined with the use of molecular imaging probes. This review presents the state-of-the-art imaging techniques and molecular imaging approaches in the field of IBD and points out future directions that could help improve our understanding of IBD pathological processes, along with the development of efficient treatments.


2016 ◽  
Vol 2 (1) ◽  
pp. 27 ◽  
Author(s):  
Josep L Melero-Ferrer ◽  
Raquel López-Vilella ◽  
Herminio Morillas-Climent ◽  
Jorge Sanz-Sánchez ◽  
Ignacio J Sánchez-Lázaro ◽  
...  

Imaging techniques play a main role in heart failure (HF) diagnosis, assessment of aetiology and treatment guidance. Echocardiography is the method of choice for its availability, cost and it provides most of the information required for the management and follow up of HF patients. Other non-invasive cardiac imaging modalities, such as cardiovascular magnetic resonance (CMR), nuclear imaging-positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and computed tomography (CT) could provide additional aetiological, prognostic and therapeutic information, especially in selected populations. This article reviews current indications and possible future applications of imaging modalities to improve the management of HF patients.


2013 ◽  
pp. 60-5
Author(s):  
Sony Hilal Wicaksono ◽  
Fachmi Ahmad Muslim ◽  
Vienna Rossimarina

Seorang pasien dapat didiagnosis penyakit jantung koroner (PJK) melalui empat cara: kematian jantung mendadak, sindrom koroner akut, angina pektoris stabil paska revaskularisasi, dan hasil diagnostik noninvasif (Computed Tomography scan/CT scan koroner, Single Photon Emission Computed Tomography Myocardial Perfusion Imaging/SPECT MPI nuklir atau Magnetic Resonance Imaging/MRI)1. Pemeriksaan noninvasif memegang peranan penting, yaitu sebagai satu-satunya cara mendiagnosis PJK asimtomatik. Oleh sebab itu, pemahaman mengenai interpretasi hasil pemeriksaan noninvasif seperti CT scan koroner, SPECT MPI nuklir atau MRI kardiak dimasukkan dalam kompetensi dasar program pendidikan spesialis jantung dan pembuluh darah menurut Kolegium PERKI.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5459
Author(s):  
Huiling Li ◽  
Zhen Liu ◽  
Lujie Yuan ◽  
Kevin Fan ◽  
Yongxue Zhang ◽  
...  

Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5547
Author(s):  
Carlos F. G. C. Geraldes

Molecular imaging has rapidly developed to answer the need of image contrast in medical diagnostic imaging to go beyond morphological information to include functional differences in imaged tissues at the cellular and molecular levels. Vibrational (infrared (IR) and Raman) imaging has rapidly emerged among the molecular imaging modalities available, due to its label-free combination of high spatial resolution with chemical specificity. This article presents the physical basis of vibrational spectroscopy and imaging, followed by illustration of their preclinical in vitro applications in body fluids and cells, ex vivo tissues and in vivo small animals and ending with a brief discussion of their clinical translation. After comparing the advantages and disadvantages of IR/Raman imaging with the other main modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography/single-photon emission-computed tomography (PET/SPECT), ultrasound (US) and photoacoustic imaging (PAI), the design of multimodal probes combining vibrational imaging with other modalities is discussed, illustrated by some preclinical proof-of-concept examples.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 237 ◽  
Author(s):  
Ana Castro-Balado ◽  
Cristina Mondelo-García ◽  
Miguel González-Barcia ◽  
Irene Zarra-Ferro ◽  
Francisco J Otero-Espinar ◽  
...  

Classical methodologies used in ocular pharmacokinetics studies have difficulties to obtain information about topical and intraocular distribution and clearance of drugs and formulations. This is associated with multiple factors related to ophthalmic physiology, as well as the complexity and invasiveness intrinsic to the sampling. Molecular imaging is a new diagnostic discipline for in vivo imaging, which is emerging and spreading rapidly. Recent developments in molecular imaging techniques, such as positron emission tomography (PET), single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), allow obtaining reliable pharmacokinetic data, which can be translated into improving the permanence of the ophthalmic drugs in its action site, leading to dosage optimisation. They can be used to study either topical or intraocular administration. With these techniques it is possible to obtain real-time visualisation, localisation, characterisation and quantification of the compounds after their administration, all in a reliable, safe and non-invasive way. None of these novel techniques presents simultaneously high sensitivity and specificity, but it is possible to study biological procedures with the information provided when the techniques are combined. With the results obtained, it is possible to assume that molecular imaging techniques are postulated as a resource with great potential for the research and development of new drugs and ophthalmic delivery systems.


Sign in / Sign up

Export Citation Format

Share Document