scholarly journals GMP-Compliant Human Fetal Skin Fibroblasts for Wound Healing

2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Parisa Goodarzi ◽  
Khadijeh Falahzadeh ◽  
Hamidreza Aghayan ◽  
Fereshteh Mohamadi Jahani ◽  
Moloud Payab ◽  
...  
2021 ◽  
Author(s):  
Hongqing Zhao ◽  
Xinzhu Liu ◽  
Jiachen Sun ◽  
Yuezeng Niu ◽  
Kun Zhang ◽  
...  

Abstract Background: Wound healing is a dynamic, sequential,and complex physiological process, including a variety of cellular events, such as proliferation, adhesion, chemotaxis, and apoptosis. Skin fibroblasts and keratinocytes are the two most important cells involved in wound repair, and Relying on the proliferation and differentiation of keratinocytes to form epithelium to completely cover the wound is the most ideal result for wound repair, so expanding the source of keratinocytes is a huge challenge. In this study, we examined the phenomenon that fetal skin fibroblasts spontaneously transdifferentiated into keratinocyte-like cells in conventional culture, and evaluated the characteristics of KLCs and the potential mechanisms of the transdifferentiation process.Methods: HFF-1 were routinely cultured in ordinary DMEM medium for more than 40 days,and observed the cell morphology. The cytological properties of KLCs at the cellular and molecular levels were detected by RT-PCR, Western-blot, immunofluorescence, Transwell, and cell scratch experiments.The functionality and safety of KLCs were determined through wound healing and tumorigenicity experiments. And high-throughput transcriptome sequencing (RNA-seq) was performed to explore the mechanism underlying HFF-1 transdifferentiation.Results: The transdifferentiation process started on the 25th day and was completed by the 40th day. KLCs and KCs had similar expressions at the molecular and protein levels, both functioned similarly in wound healing and were non-tumorigenic.RNA-seq revealed that the transdifferentiation process was regulated by the activation of the classical Wnt/β-catenin signaling pathway, which could shorten the process to 10 days.Conclusion: This study demonstrates that HFF-1 can spontaneously transdifferentiate into KLCs with conventional culture conditions, and the Wnt/β-catenin signaling pathway regulates the transdifferentiation process.


1998 ◽  
Vol 43 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Colleen Coleman ◽  
Tai-Lan Tuan ◽  
Sue Buckley ◽  
Kathryn D Anderson ◽  
David Warburton

1987 ◽  
Vol 88 (6) ◽  
pp. 732-735 ◽  
Author(s):  
Gregory C Sephel ◽  
Anne Buckley ◽  
Jeffrey M Davidson

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dong Yang ◽  
Jun-hua Xu ◽  
Ren-jie Shi

Wound healing is the main problem in the therapy of anal fistula (AF). Daphne genkwa root has been traditionally used as an agent to soak sutures in operation of AF patients, but its function in wound healing remains largely unclear. The aim of the present study was to illuminate mechanisms of D. genkwa root treatment on AF. In the present study, 60 AF patients after surgery were randomly divided into two groups, external applied with or without the D. genkwa extractive. Wound healing times were compared and granulation tissues were collected. In vitro, we constructed damaged human skin fibroblasts (HSFs) with the treatment of TNF-α (10 μg/ml). Cell Count Kit-8 (CCK-8) and flow cytometry analysis were used to determine the effects of D. genkwa root extractive on cell viability, cell cycle and apoptosis of damaged HSFs. Furthermore, protein levels of TGF-β, COL1A1, COL3A1, Timp-1, matrix metalloproteinase (MMP)-3 (MMP-3) and MEK/ERK signalling pathways were investigated both in vivo and in vitro. Results showed that D. genkwa root extractive greatly shortens the wound healing time in AF patients. In granulation tissues and HSFs, treatment with the extractive significantly elevated the expressions of COL1A1, COL3A1, Timp-1, c-fos and Cyclin D1, while reduced the expression of MMP-3. Further detection presented that MEK/ERK signalling was activated after the stimulation of extractive in HSFs. Our study demonstrated that extractive from D. genkwa root could effectively improve wound healing in patients with AF via the up-regulation of fibroblast proliferation and expressions of COL1A1 and COL3A1.


2019 ◽  
Vol 133 (9) ◽  
Author(s):  
Tingting Zeng ◽  
Xiaoyi Wang ◽  
Wei Wang ◽  
Qiling Feng ◽  
Guojuan Lao ◽  
...  

Abstract Diabetic foot ulcer is a life-threatening clinical problem in diabetic patients. Endothelial cell-derived small extracellular vesicles (sEVs) are important mediators of intercellular communication in the pathogenesis of several diseases. However, the exact mechanisms of wound healing mediated by endothelial cell-derived sEVs remain unclear. sEVs were isolated from human umbilical vein endothelial cells (HUVECs) pretreated with or without advanced glycation end products (AGEs). The roles of HUVEC-derived sEVs on the biological characteristics of skin fibroblasts were investigated both in vitro and in vivo. We demonstrate that sEVs derived from AGEs-pretreated HUVECs (AGEs-sEVs) could inhibit collagen synthesis by activating autophagy of human skin fibroblasts. Additionally, treatment with AGEs-sEVs could delay the wound healing process in Sprague–Dawley (SD) rats. Further analysis indicated that miR-106b-5p was up-regulated in AGEs-sEVs and importantly, in exudate-derived sEVs from patients with diabetic foot ulcer. Consequently, sEV-mediated uptake of miR-106b-5p in recipient fibroblasts reduces expression of extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in fibroblasts autophagy activation and subsequent collagen degradation. Collectively, our data demonstrate that miR-106b-5p could be enriched in AGEs-sEVs, then decreases collagen synthesis and delays cutaneous wound healing by triggering fibroblasts autophagy through reducing ERK1/2 expression.


Sign in / Sign up

Export Citation Format

Share Document