scholarly journals Isolation and Identification of Resistant Microorganisms from Automotive Paint Sludge

2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Fatemeh Honarjooy Barkusaraey ◽  
Roya Mafigholami ◽  
Mohammad Faezi Ghasemi ◽  
Gholam Khayati

Background: Paint coating systems are widely implemented on different surfaces for both aspects of decoration and protection against corrosion. Due to the presence of organic compounds, the growth of microorganisms is more likely to take place in paints, such as automotive paint. In the process of automotive painting, 20% - 60% of the paint does not expose to the automotive body, which is washed using water and would lead to the painting sludge formation. Paint sludge is considered one of the hazardous wastes from the automotive industry, which is finally landfilled or incinerated. Objectives: Despite the presence of inhibiting compounds in paint sludge, such as heavy metals and biocides, the objective of this study was to isolate and identify microorganisms in the sludge culture. Methods: The microorganisms were isolated using serial dilutions, direct cultivation, and enrichment methods in basic salt cultivation media. Then, their biochemical and molecular specifications were investigated. Results: The number of microorganisms counted in paint sludge was approximately around 1 × 104 CFU/mL, and six isolated colonies were finally obtained. Conclusions: The main isolated microbial consortium from paint sludge included Pseudomonas aeruginosa, Staphylococcus haemolyticus, Micrococcus yunnanensis, Rothia amarae, Gordonia terrae, and Brevibacillus agri. Nearly 83% of the isolated strains were Gram-positive.

2014 ◽  
Vol 548-549 ◽  
pp. 191-195 ◽  
Author(s):  
Zakiuddin Januri ◽  
Norazah Bt Abdul Rahman ◽  
Siti Shawalliah Idris ◽  
Sharmeela Matali ◽  
Shareena Fairuz Abdul Manaf

This paper reported on the product yield of automotive paint sludge via microwave assisted pyrolysis. By having an optimum weight sample loading and power level at 500g and 1000W respectively, optimum product in terms of liquid yields has been obtained. This desired liquid product comprised hydrocarbon material since it contains oil layer and almost 40% of the product can be recovered from the automotive paint sludge with an optimum microwave parameter. Furthermore, the liquid product has a potential to be used as fuel since it exhibit high energy content at 22.6 MJ/kg.


2003 ◽  
Vol 69 (6) ◽  
pp. 3492-3499 ◽  
Author(s):  
Yang Hong ◽  
Mark E. Berrang ◽  
Tongrui Liu ◽  
Charles L. Hofacre ◽  
Susan Sanchez ◽  
...  

ABSTRACT Contamination of retail poultry by Campylobacter spp. and Salmonella enterica is a significant source of human diarrheal disease. Isolation and identification of these microorganisms require a series of biochemical and serological tests. In this study, Campylobacter ceuE and Salmonella invA genes were used to design probes in PCR-enzyme-linked immunosorbent assay (ELISA), as an alternative to conventional bacteriological methodology, for the rapid detection of Campylobacter jejuni, Campylobacter coli, and S. enterica from poultry samples. With PCR-ELISA (40 cycles), the detection limits for Salmonella and Campylobacter were 2 � 102 and 4 � 101 CFU/ml, respectively. ELISA increased the sensitivity of the conventional PCR method by 100- to 1,000-fold. DNA was extracted from carcass rinses and tetrathionate enrichments and used in PCR-ELISA for the detection of Campylobacter and S. enterica, respectively. With PCR-ELISA, Salmonella was detected in 20 of 120 (17%) chicken carcass rinses examined, without the inclusion of an enrichment step. Significant correlation was observed between PCR-ELISA and cultural methods (kappa = 0.83; chi-square test, P < 0.001) with only one false negative (1.67%) and four false positives (6.67%) when PCR-ELISA was used to screen 60 tetrathionate enrichment cultures for Salmonella. With PCR-ELISA, we observed a positive correlation between the ELISA absorbance (optical density at 405 nm) and the campylobacter cell number in carcass rinse, as determined by standard culture methods. Overall, PCR-ELISA is a rapid and cost-effective approach for the detection and enumeration of Salmonella and Campylobacter bacteria on poultry.


2021 ◽  
Vol 10 (Supplement_2) ◽  
pp. S19-S19
Author(s):  
Johanny Contreras ◽  
Karina Rivera ◽  
María Castillo ◽  
Genara Santana ◽  
María Dolores Gil ◽  
...  

Abstract Background In October 2018, the Hispaniola Project was initiated to build local expertise in infection care and prevention at three pediatric oncology units (POUs) in Haiti and the Dominican Republic. Surveillance of healthcare-associated infections (HAI) was a central aim. Severe and prolonged neutropenia is a frequent risk factor for infections in oncology patients. Among HAIs, bacteremia is one of the most serious; bacteremia requires timely isolation and identification of the offending microorganism and the antimicrobial susceptibility. These diagnostic interventions allow informed therapeutic and prophylactic measures. Here, we report our experience in bacteremia in these 3 POUs. Methods We conducted prospective infection surveillance of all patients admitted to three POUs in Hispaniola Island. Blood culture methods followed standard national procedures. We used the 2018 US Centers for Disease Control National Healthcare Safety Network case definitions for primary laboratory-confirmed bloodstream infections (LCBI), and we categorized infections as healthcare-associated or present on admission (POA). We reviewed data collected from January 2019 to December 2020 and used descriptive statistics to report our results. Results Our review identified 66 LCBIs with an overall rate of 3.52 infections per 1000 patient-days. Of these, 40 (61%) were healthcare-associated, and 26 were POA. The majority (41, 62%) of patients were undergoing chemotherapy at the time of the infection, with induction being the most common phase (23). The most common oncologic diagnosis was acute lymphoblastic leukemia (43, 65%), followed by solid tumor (12, 18%). Fifty-three (80%) of the infections met the LCBI-1 criteria, with the other 13 categorized as LBCI-2. Of the 53 LCBI-1, 7 (13%) were considered related to mucosal barrier injury (MBI-LCBI 1 definition). The most commonly identified organisms were Klebsiella spp. (13, 19%) and coagulase-negative Staphylococcus (13, 19%). Antibiotic resistance was observed in many of the identified pathogens, with nearly half (25, 44%) of the 57 bacterial isolates having any resistance and a quarter (14, 25%) with resistance to multiple classes, including cephalosporins, fluoroquinolones, and aminoglycosides. Eleven (17%) patients were admitted to the Intensive Care Unit as a result of the LCBI. Thirteen deaths were recorded among the patients with LCBIs, with 6 (46%) associated with the HAI and 7 (54%) related to disease progression. Conclusions Our findings demonstrate that resistant pathogens were frequent among the LCBI isolates. Our preliminary results are guiding clinical management to be vigilant in our care of patients at high risk for bacteremia and poor clinical response by initiating more effective antimicrobials sooner. Importantly, reviewing reasons for antimicrobial resistance and implementing best antimicrobial use practices will protect our fragile antibiotic arsenal. Infection surveillance programs, such as ours, and other initiatives which promote infection prevention and control in POU will increase the quality of care for these vulnerable patients.


2017 ◽  
Vol 80 (10) ◽  
pp. 1623-1627 ◽  
Author(s):  
Hela Jribi ◽  
Hanen Sellami ◽  
Siala Mariam ◽  
Salma Smaoui ◽  
Asma Ghorbel ◽  
...  

ABSTRACT Thermophilic Campylobacter spp. are one of the primary causes of bacterial human diarrhea. The consumption of poultry meats, by-products, or both is suspected to be a major cause of human campylobacteriosis. The aims of this study were to determine the prevalence of thermophilic Campylobacter spp. in fresh poultry meat and poultry by-products by conventional culture methods and to confirm Campylobacter jejuni and Campylobacter coli isolates by using the multiplex PCR assay. Two hundred fifty fresh poultry samples were collected from a variety of supermarkets and slaughterhouses located in Sfax, Tunisia, including chicken (n =149) and turkey (n =101). The samples were analyzed using conventional microbiological examinations according to the 2006 International Organization for Standardization method (ISO 10272-1) for Campylobacter spp. Concurrently, a real-time PCR was used for identification of C. jejuni and C. coli. Of the 250 samples of poultry meat and poultry by-products, 25.6% (n = 64) were contaminated with Campylobacter spp. The highest prevalence of Campylobacter spp. was found in chicken meat (26.8%) followed by turkey meat (23.7%). Among the different products, poultry breasts showed the highest contamination (36.6%) followed by poultry by-products (30%), poultry wings (28%) and poultry legs (26%) showed the lowest contamination, and no contamination was found on neck skin. Of the 64 thermophilic Campylobacter isolates, C. jejuni (59.7%) was the most frequently isolated species and 10.9% of the isolates were identified as C. coli. All of the 64 Campylobacter isolates identified by the conventional culture methods were further confirmed by PCR. The seasonal peak of Campylobacter spp. contamination was in the warm seasons (spring and summer). The study concluded that high proportions of poultry meat and poultry by-products marketed in Tunisia are contaminated by Campylobacter spp. Furthermore, to ensure food safety, poultry meats must be properly cooked before consuming.


2015 ◽  
Vol 789-790 ◽  
pp. 66-70 ◽  
Author(s):  
Syarifah Nor Faizah Syed Abdul Rahman ◽  
Norazah Abdul Rahman ◽  
Siti Shawalliah Idris ◽  
Noor Fitrah Abu Bakar ◽  
Roslan Mokhtar ◽  
...  

Application of microwave absorber (MWA) does affect the yield of microwave pyrolysis process. In this study, activated carbon and graphite have been used as microwave absorbers and the results were then compared with the microwave pyrolysis process without microwave absorber. The yield of solid and liquid increased while the yield of gas decreased with the application of MWA. Chemical functional group inside MWA also affected by the microwave pyrolysis process and energy content of MWA slightly increased from 24.54 MJ/kg to 29.57 MJ/kg and 32.17 MJ/kg to 32.24 MJ/kg for activated carbon and graphite, respectively.


Author(s):  
C. A. Drewien

Electrodeposited iron-zinc alloy (EZA) coatings, used for barrier and galvanic corrosion protection of steel by the automotive industry, are deposited under conditions, which give rise to small grain sizes and non-equilibrium phases. Subsequent processing of automotive body panels requires a paint bake cycle of 175 °C for 30 minutes. The as-deposited microstructure has not been investigated by TEM due to difficulty of sample preparation, and information on the effect of heat treatment upon EZA coatings is lacking. In this study, the as-deposited microstructure of a 6 w/o Fe EZA coating is investigated with electron microscopy, and in-situ heating in the TEM is used to observe the thermal stability of the microstructure.A 6 w/o bulk iron content EZA coating was electrodeposited from a chloride bath onto a steel surface. The 7 μm thick coating was removed from the substrate, and three mm disks, punched from the material, were electropolished at 30-40 V in a room temperature, aqueous chromic-acetic acid mix. Samples were imaged with a JEOL 6300 FEG-SEM operated with an accelerating voltage of 1 keV and with a Philips 430 EM under an operating voltage of 250 keV.


Alloy Digest ◽  
2006 ◽  
Vol 55 (9) ◽  

Abstract Mittal Di-Form T500 is a dual-phase steel intended primarily for exposed outer automotive body panels (door, hoods, and fenders). Dual-phase steels are one of the important advanced high-strength steel products developed for the automotive industry. Their microstructure typically consists of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The Di-Form grades exhibit low yield-to-tensile strength ratios and the name corresponds to the tensile strength. This datasheet provides information on tensile properties as well as deformation and fatigue. It also includes information on forming and joining. Filing Code: SA-556. Producer or source: Mittal Steel USA Flat Products.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Danyelle Alves Martins Assis ◽  
Rachel Passos Rezende ◽  
João Carlos Teixeira Dias

Modern techniques involving molecular biology, such as metagenomics, have the advantage of exploiting a higher number of microorganisms; however, classic isolation and culture methods used to obtain antimicrobials continue to be promising, especially in the isolation of Actinobacteria, which are responsible for the production of many of these compounds. In this work, two methodologies were used to search for antimicrobial substances—isolation of Actinobacteria and metagenomics of the Atlantic Rainforest soil and of the cultivation of cocoa intercropped with acai berry in the Atlantic Rainforest. The metagenomic libraries were constructed with the CopyControl Fosmid Library kit EPICENTRE, resulting in a total of 2688 clones, 1344 of each soil sample. None of the clones presented antimicrobial activity against the microorganisms tested: S. aureus, Bacillus subtilis, and Salmonella choleraesuis. A total of 46 isolates were obtained from the isolation of soil Actinobacteria: 24 isolates from Atlantic Rainforest soil and 22 isolates from the intercrop cultivation soil. Of these, two Atlantic Rainforest soil isolates inhibited the growth of S. aureus including a clinical isolate of S. aureus MRSA—a promising result, since it is an important multidrug-resistant human pathogen.


Sign in / Sign up

Export Citation Format

Share Document