scholarly journals PŮVOD A CHEMICKÉ SLOŽENÍ FLUID POVARISKÉ HYDROTERMÁLNÍ MINERALIZACE NA LOKALITĚ ZLATÝ DŮL U HLUBOČEK (SPODNÍ KARBON NÍZKÉHO JESENÍKU)

2016 ◽  
Vol 23 (1-2) ◽  
Author(s):  
Michaela Kotlánová ◽  
Zdeněk Dolníček

Origin and chemical composition of fluids of hydrothermal ore veins at historical deposit Zlatý důl near Hlubočky (Lower Carboniferous of the Nízký Jeseník Upland) were studied using petrography, microthermometry and crush-leach analysis of fluid inclusions and analysis of stable isotopes of oxygen and carbon in carbonates, oxygen in quartz and sulphur in sulphides. Studied mineralization has epithermal and partly mesothermal character (Th = < 50 to 293 °C). The H2O-NaCl-CaCl2 system is mostly enclosed in the primary fluid inclusions in minerals of post-Variscan ore veins. These fluids had low to medium homogenization temperatures (68 to 293 °C) and moderate to high salinities (19–27 wt. % NaCl eq.). In contrast, low to moderate salinity (0–10 wt. % NaCl eq.) fluids of the system H2O-NaCl-KCl-(MgCl2-FeCl2) with low homogenization temperatures (< 50 to 110 °C) were enclosed in secondary fluid inclusions. The main source of water was probably evaporated seawater for older fluids. The source of carbon was in carbon of the homogenized Earth’s crust and partly in carbon of organic matter. Meteoric water is the main source for younger fluids. Origin of sulphur of sulphides is in the surrounding Lower Carboniferous sediments (shales). The high content of SO4 in fluids hosted by Fe-rich dolomite suggests the origin of the fluids in the evaporated Permian basins. Studied older quartz-galena vein is probably Variscan in age. Genetically similar mineralization can be found also at other localities in the Moravo-Silesian Lower Carboniferous (Culm, siliciclastics of the Lower Carboniferous age).

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296
Author(s):  
Aung Min Oo ◽  
Lv Xinbiao ◽  
Khin Zaw ◽  
Than Htay ◽  
Sun Binke ◽  
...  

The Lyhamyar deposit is a large Sb deposit in the Southern Shan Plateau, Eastern Myanmar. The deposit is located in the Early Silurian Linwe Formation, occurring as syntectonic quartz-stibnite veins. The ore body forms an irregular staircase shape, probably related to steep faulting. Based on the mineral assemblages and cross-cutting relationships, the deposit shows two mineralization stages: (1) the pre-ore sedimentary and diagenetic stage, and (2) the main-ore hydrothermal ore-forming stage (including stages I, II, and III), i.e., (i) early-ore stage (stage I) Quartz-Stibnite, (ii) late-ore stage (stage II) Quartz-calcite-Stibnite ± Pyrite, and (iii) post-ore stage (stage III) carbonate. The ore-forming fluid homogenization temperatures from the study of primary fluid inclusions in quartz and calcite indicate that the ore-forming fluid was of a low temperature (143.8–260.4 °C) and moderate to high-salinity (2.9–20.9 wt. % NaCl equivalent). Hydrogen and oxygen isotopes suggest that the ore-forming fluids of the Lyhamyar deposit were derived from circulating meteoric water mixed with magmatic fluids that underwent isotopic exchange with the surrounding rocks. Sulfur in Lyhamyar was dominated by thermochemical sulfate reduction (TSR) with dominant magmatic source sulfur. The lead isotope compositions of the stibnite indicate that the lead from the ore-forming metals was from the upper crustal lead reservoir and orogenic lead reservoir. On the basis of the integrated geological setting, ore geology, fluid inclusions, (H-O-S-Pb) isotope data, and previous literature, we propose a new ore-deposit model for the Lyhamyar Sb deposit: It was involved in an early deposition of pyrite in sedimentary and diagenetic stages and later Sb mineralization by mixing of circulating meteoric water with ascending magmatic fluids during the hydrothermal mineralization stage.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 823 ◽  
Author(s):  
Anatoliy R. Galamay ◽  
Krzysztof Bukowski ◽  
Daria V. Sydor ◽  
Fanwei Meng

Fluid inclusions in halite are widely used in research to determine the conditions of sedimentation in salt basins and reconstruct the chemical composition of seawater during a specific geological period. However, previous preliminary studies of the genetic types of inclusions, considered in the present research project, have not received due attention. Consequently, we decided to take into account the main distinguishing features of fluid inclusions in halite, belonging to various genetic types. The ultramicrochemical analysis (UMCA) method is one of the several methods that are used for the quantitative determination of the chemical composition of the primary fluid inclusions in halite. We have upgraded that technique, and that allowed us to reduce the analytical error rates of each component determination. The error rates were calculated in the study of Ca-rich and SO4-rich types of natural sedimentary brines.


2019 ◽  
Vol 114 (7) ◽  
pp. 1415-1442 ◽  
Author(s):  
Christophe Scheffer ◽  
Alexandre Tarantola ◽  
Olivier Vanderhaeghe ◽  
Panagiotis Voudouris ◽  
Paul G. Spry ◽  
...  

Abstract The formation of ore deposits in the Lavrion Pb-Zn-Ag district was associated with Miocene detachment that accommodated orogenic collapse and exhumation of high-grade nappes across the ductile-brittle transition. This district consists of (1) low-grade porphyry Mo style, (2) Cu-Fe skarn, (3) high-temperature carbonate replacement Pb-Zn-Ag, and (4) vein and breccia Pb-Zn-Ag mineralization. The vein and breccia mineralization locally contains high-grade silver in base metal sulfides that are cemented by fluorite and carbonate gangue. The rare earth element contents of these gangue minerals, chondrite-normalized patterns, and fluid inclusion studies suggest that they precipitated from a low-temperature hydrothermal fluid. Primary and pseudosecondary fluid inclusions in fluorite and calcite are characterized by a wide range of homogenization temperatures (92°–207°C) and salinities of up to 17.1 wt % NaCl equiv. Secondary fluid inclusions only represent <5 vol % of the total fluid trapped. Fluids extracted from inclusions in fluorite have values of δD = –82.1 to –47.7‰ (Vienna-standard mean ocean water [V-SMOW]) and δ18O = –10.4 to –5.1‰ (V-SMOW). These data and low ratios of Cl/Br measured by crush-leach analyses for fluids in fluorite (102–315) and calcite (162–188) are compatible with the ore fluid being the result of mixing of meteoric water with evaporated seawater. These data suggest that fluids leading to the deposition of late Pb-Zn-Ag–rich vein- and breccia-style mineralization in Lavrion were related to circulation of mixed evaporated seawater and meteoric fluids that was enhanced by brittle deformation. This contrasts with the fluids of magmatic origin related to the formation of low-grade porphyry Mo, Cu-Fe skarn, and high-temperature carbonate replacement deposits spatially related to the Plaka granodiorite.


2021 ◽  
Vol 91 (11) ◽  
pp. 1206-1226
Author(s):  
Maialen Lopez-Elorza ◽  
Maria Belén Muñoz-García ◽  
Laura González-Acebrón ◽  
Javier Martín-Chivelet

ABSTRACT Fluids trapped in speleothems have an enormous potential in frontier fields of paleoclimate and paleohydrological research. This potential is, however, hampered by diverse scientific and technical limitations, among which the lack of a systematic methodology for genetically characterizing fluid inclusions is a major one, as these can have different origins, and thus, the trapped fluid (usually water), different meanings. In this work, we propose a systematic petrological classification of fluid inclusions, based on: 1) the temporal relation between fluid inclusions and the host calcite, 2) the spatial relation between fluid inclusions and the “crystallites” and crystals aggregates, and 3) the phases (water, air) trapped inside fluid inclusions. The first criterion allows dividing fluid inclusions in two main categories: primary and secondary, whose identification is critical in any research based on trapped fluids. The other two criteria allow the definition of eight types of primary and four types of secondary fluid inclusions. Primary fluid inclusions contain the drip water that fed stalagmites at the time of crystal growth, and can be intercrystalline, i.e., located between adjacent crystallites, or intracrystalline, i.e., with the fluid trapped within crystallites. We differentiate six main types among the intercrystalline fluid inclusions (elongate, thorn-shaped, down-arrow, interbranch, macro-elongate, and bucket) and other two among intracrystalline inclusions (pyriform and boudin). In primary inclusions, water is the main phase, while gas is much less abundant. The presence of gas could be related to slow drip rates or degassing in the cave, but also to later leakage due to changes in temperature and humidity often occurring during inadequate handling of speleothem samples. Secondary fluid inclusions were clearly related to younger water inlet through stratigraphic disruptions or unconformities. They are formed after water infiltration, but sealed before the renewed crystal growth. We differentiate four main types of secondary inclusions: interconnected, rounded, triangular, and vertical fluid inclusions. The identification of primary and secondary fluid inclusions in speleothems is a key for interpretation in paleoclimate studies. Integration of petrological results allow establishment of three different genetic scenarios for the formation of fluid inclusions, whose identification can be relevant because of their predictive character.


1999 ◽  
Vol 26 (2) ◽  
pp. 3
Author(s):  
FLÁVIO FRANÇA DA ROCHA ◽  
ARTHUR CÉZAR BASTOS NETO

This work deals on the fluorite deposits from the Grão Pará (GP) and Rio Bravo Alto (RBA) veins systems both situated at the northern part of Santa Catarina Fluorite District. The GP deposits are controlled by an ancient shear zone. Ore deposition is related to two tectonic phases: (1) dextral transtensive reactivation related to a NE/SW compression; deposition of green-purple massive or coarse banded fluorite; tectonic and hydraulic breccias assign successive transitions from hydrostatic to tectonic regimes; the ore was affected by latter silicification; (2) reactivation as normal fault, related to a extensional tectonic; deposition of purple and yellow banded fluorite, collapse breccias and cocardes. First phase fluorite was deposited at temperatures decreasing from 170º to 120ºC; silicification temperature is around 140ºC. Second phase fluorite was deposited at temperatures between 140º and 120ºC. The fluid inclusions salinity range from 0 to 2% eq. NaCl. The isotopic composition of water from primary fluid inclusions in the fluorite at RBA (δD ͌ -60‰ SMOW) is typical of meteoric water from interior continental region. The RBA fluorite has the same HREE signature as fluorite from the southern district deposits and regional granites. REE and fluid inclusion data reject a link with alkaline magmatism. Fluorine was leached from accessory fluorite of regional granites. The fluorite deposition was connected to a single hydrothermal event correlated to the earlier hydrothermal event described at the southern district.    


1989 ◽  
Vol 53 (373) ◽  
pp. 539-545 ◽  
Author(s):  
A. A. de Maesschalck ◽  
I. S. Oen

AbstractMineral and fluid inclusions were studied in seven gem corundums from gravels of three areas in Sri Lanka. All fluid inclusions are pure CO2. Microthermometry results on primary fluid inclusions suggest formation of corundum under granulite facies metamorphism (>630°C, 5.5 kbar). Secondary fluid inclusions indicate different retrograde events of post-metamorphic cooling and uplift for different source areas.


1990 ◽  
Vol 54 (375) ◽  
pp. 305-309 ◽  
Author(s):  
A. Canals-Sabate ◽  
J. C. Touray ◽  
J. Fabre

AbstractLarge thenardite crystals have been sampled at New Agorgott, in the Taoudenni area of northern Mali. They are still in equilibrium with a pressurized NaCl saturated brine capped by a halite layer. Clays located about 1 m above the thenardite occurrence have been dated at 6760 y.BP. The crystals contain numerous, large, brine and solid inclusions. Microcryscopic studies show that the fluids can be explained by the addition of MgCl2 to the Na2SO4-NaCl-H2O system (eutectic temperature: −31 to −35°C; possible bloedite Na2Mg(SO4)2.4H2O formed after freezing). The homogenization temperatures of primary fluid inclusions are in the range 28 to 50°C. In order to understand the significance of the highest Th values, overheating experiments under 1 bar pressure were performed at different heating rates up to 170°C. The results are as follows:(i)When the temperature of stretching (TOh) is higher than about 10°C, overheating is recorded and fossilized (identical Th after some hours, several days or 8 months storage at 5°C).(ii)The lowest Th values (28°C) are probably near the formation temperature of thenardite; the highest ones reflect stretching under present desert conditions.(iii)With TOh lower than about 60°C, a fair correlation is observed between Th and TOh.Finally, taking into account recent natural overheating, the fluid inclusion data are compatible with the formation of thenardite from underground brines later than the beginning of desert conditions in the Taoudenni area (i.e. about 3000 y.BP).


2021 ◽  
pp. 60-69
Author(s):  
U.A. Yatimov ◽  
N.N. Ankusheva ◽  
M.A. Rassomakhin

Fluid inclusions are studied in calcite from magnetite ores and sulfde-carbonate veins of the Aktash sulfde-magnetite deposit (Western Karanazar, Tajikistan) to identify their formation conditions. The deposit is confned to a contact zone between carbonate (Upper Devonian–Lower Carboniferous dolomite and limestones) and intrusive rocks (Middle Carboniferous–Early Triassic granodiorites and porphyry granodiorites) of the Kansai ore feld. The fuid inclusion study showed that calcite of ore veins formed from moderately saline (4.4–10.8 wt. % NaCl-equiv.) aqueous Na-K ± Mg chloride fuids at a decreasing temperature from 300 to 160 °C. The homogenization temperatures of fuid inclusions are consistent with thermometric data for chlorite, which formed together with calcite (176–295 °C). Keywords: calcite, chlorite, formation conditions, fuid inclusions, polymetallic ores, magnetite ores, Aktash deposit, Western Karamazar.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 868
Author(s):  
Tomasz Toboła ◽  
Piotr Kukiałka

The Lotsberg Salt Formation (LSF) of the Lower Devonian age occupies a large area in Alberta (Canada). It has been used for brine production, disposal, and storage purposes since the 1950s. Its petrological and geochemical features remain poorly understood up to now. Previous studies showed that these salt rocks are large crystalline and distinguishable by a very low bromine content (2–5 ppm). Our studies reveal that the main impurity is dolomite with an addition of haematite. It showed, also, a lack of sulphate minerals (anhydrite). Manganite also occurs within the halite crystals. Microthermometric measurements of primary fluid inclusions in halite show a large range of homogenization temperatures from 32.4 °C to 357.0 °C with the highest temperature in the upper part of the salt profile. Geochemical analysis confirms the low bromine contents, which is between 0.67–12.74 ppm. Potassium contents (166–3651 ppm) seem to be in the normal range for salt rocks, but magnesium content (25–177 ppm) is much lower than potassium. Rubidium is, as well, within the normal range, with values between <0.01 ppm and 3.13 ppm, while caesium contents (5.07–211.22 ppm) are almost sixty times higher in comparison to those of rubidium. The high concentration of Cs, Mn, Rb, and the high homogenization temperatures of the host minerals suggest that the LSF underwent extensive ion exchange related to hydrothermal inflow. These hydrothermal solutions originated from the basement of the LSF.


Sign in / Sign up

Export Citation Format

Share Document