scholarly journals Effect of Persian shallot (Allium hirtifolium Boiss.) extract on glucokinase (GCK), glycogen phosphorylase and phosphoenolpyruvate carboxykinase (PEPCK) genes expression in diabetic rats

2013 ◽  
Vol 7 (7) ◽  
pp. 389-396 ◽  
Author(s):  
Mehdi Mahmoodi
Author(s):  
Kuixiong Gao ◽  
Randal E. Morris ◽  
Bruce F. Giffin ◽  
Robert R. Cardell

Several enzymes are involved in the regulation of anabolic and catabolic pathways of carbohydrate metabolism in liver parenchymal cells. The lobular distribution of glycogen synthase (GS), phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) was studied by immunocytochemistry using cryosections of normal fed and fasted rat liver. Since sections of tissue embedded in polyethylene glycol (PEG) show good morphological preservation and increased detectability for immunocytochemical localization of antigenic sites, and semithin sections of Visio-Bond (VB) embedded tissue provide higher resolution of cellular structure, we applied these techniques and immunogold-silver stain (IGSS) for a more accurate localization of hepatic carbohydrate metabolic enzymes.


1996 ◽  
Vol 270 (2) ◽  
pp. E344-E352 ◽  
Author(s):  
A. T. Ozcelikay ◽  
D. J. Becker ◽  
L. N. Ongemba ◽  
A. M. Pottier ◽  
J. C. Henquin ◽  
...  

Molybdenum mimics certain insulin actions in vitro. We have investigated the effects of oral administration of Na2MoO4 (Mo) for 8 wk on carbohydrate and lipid metabolism in streptozotocin-diabetic rats. Mo decreased hyperglycemia and glucosuria by 75% and corrected the elevation of plasma nonesterified fatty acids. Tolerance to glucose loads was improved, and glycogen stores were replenished. These effects were not due to a rise of insulinemia. In liver, Mo restored the blunted mRNA and activity of glucokinase and pyruvate kinase and decreased to normal phosphoenolpyruvate carboxykinase values. Finally, Mo totally reversed the low expression and activity of acetyl-CoA carboxylase and fatty acid synthase in liver, but not in white adipose tissue. In conclusion, Mo exerts a marked blood glucose-lowering effect in diabetic rats by an insulin-like action. This effect results in part from a restoration of hepatic glucose metabolism and is associated with a tissue-specific correction of lipogenic enzyme gene expression, both processes being essentially mediated by reversal of impaired pretranslational regulatory mechanisms. These observations raise new therapeutic perspectives in diabetes, particularly in the insulin-resistant condition.


Author(s):  
Abbas Bakhteyari ◽  
Yasaman Zarrin ◽  
Parvaneh Nikpour ◽  
Zeinab Sadat Hosseiny ◽  
Zeinab Sadat Hosseiny ◽  
...  

Background: Diabetes mellitus deeply changes the genes expression of integrin (Itg) subunits in several cells and tissues such as monocytes, arterial endothelium, kidney glomerular cells, retina. Furthermore, hyperglycemia could impress and reduce the rate of successful assisted as well as non-assisted pregnancy. Endometrium undergoes thorough changes in normal menstrual cycle and the question is: What happens in the endometrium under diabetic condition? Objective: The aim of the current study was to investigate the endometrial gene expression of α3, α4, αv, Itg β1 and β3 subunits in diabetic rat models at the time of embryo implantation. Materials and Methods: Twenty-eight rats were randomly divided into 4 groups: control group, diabetic group, pioglitazone-treated group, and metformin-treated group. Real-time PCR was performed to determine changes in the expression of Itg α3, α4, αv, β1, and β3 genes in rat’s endometrium. Results: The expression of all Itg subunits increased significantly in diabetic rats’ endometrium compared with control group. Treatment with pioglitazone significantly reduced the level of Itg subunits gene expression compared with diabetic rats. While metformin had a different effect on α3 and α4 and elevated these two subunits gene expression. Conclusion: Diabetes mellitus significantly increased the expression of studied Itg subunits, therefore untreated diabetes could be potentially assumed as one of the preliminary elements in embryo implantation failure.


1984 ◽  
Vol 246 (2) ◽  
pp. E134-E140 ◽  
Author(s):  
T. B. Miller

A hypersensitivity of glycogen phosphorylase activation by epinephrine and glucagon has been demonstrated in isolated perfused working and non-working hearts from diabetic rats. Accumulation of tissue cAMP and activation of cAMP-dependent protein kinase in response to epinephrine and glucagon were no greater and usually less in hearts of diabetic than of normal rats. Insulin deficiency was not associated with greater changes in epinephrine-induced activation of glycogen phosphorylase kinase than that observed in normal hearts. Perfusion of hearts with subphysiological concentrations of calcium (0.83 mM) partially reversed the diabetes-related hypersensitivity of phosphorylase activation by epinephrine. The phosphorylase activation hypersensitivity to epinephrine was completely reversed by adrenalectomizing diabetic rats 5 days before heart perfusion, an effect potentially caused by steroid-induced changes in cardiac calcium metabolism. These data are consistent with the hypothesis that phosphorylase activation by phosphorylase kinase is allosterically increased in the diabetic due to a diabetes-related increase in free intracellular calcium concentrations.


Author(s):  
Rohan S Phatak ◽  
Chitra C Khanwelkar ◽  
Kailas D Datkhile ◽  
Pratik P Durgawale

Objectives: The present study was aimed to investigate the in vitro activity of Murraya koenigii extracts through various carbohydrate metabolic pathways in the isolated rat hepatocyte models.Methods: Different doses of metformin, aqueous and methanol extracts of M. koenigii leaves were evaluated in the MTT, glucose, and glycogen content assays in the cultured in vitro rat hepatocytes.Results: The study showed that there was a significant increase in activity with respect to the increased concentration of extracts. Slight effect was observed in the isolated rat hepatocytes culture, M. koenigii leaves extract may exert cytoprotective and hypoglycemic action.Conclusion: It may be needed to determine the effect of ex vivo rat hepatocytes isolated from diabetic rats. Effects of the plant or isolated compounds on the genes expression of signaling pathways should be investigated in further studies.


1989 ◽  
Vol 257 (1) ◽  
pp. E74-E80
Author(s):  
J. Rulfs ◽  
S. R. Jaspers ◽  
A. K. Garnache ◽  
T. B. Miller

Whereas total cardiac glycogen phosphorylase activity appears to be unaffected by severe insulin deficiency, a diabetes-induced decreased in hepatic glycogen phosphorylase activity has been demonstrated by our laboratory and others using liver extracts, isolated perfused liver, and cultured hepatocytes. The loss of activity in diabetic liver can be correlated with a drop in protein levels. Using primary cultures of cells from normal and diabetic rats and phosphorylase specific antibodies, we found a corresponding decrease in phosphorylase synthesis in diabetic hepatocytes cultured for 2 days in a serum-free, chemically defined medium. When hepatocytes are cultured in the presence of insulin, triiodothyronine, and cortisol, there is a significant recovery in the rate of phosphorylase synthesis after 3 days. Over the 3-day time period, there is no significant difference in the rate of phosphorylase degradation in normal compared with diabetic hepatocytes. Total protein synthesis in both hepatocytes and cardiomyocytes is unaffected by diabetes, as is phosphorylase synthesis in cultured cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document