scholarly journals Influence of variable particle size reinforcement on mechanical and wear properties of alumina reinforced 2014Al alloy particulate composite

2020 ◽  
Vol 48 (4) ◽  
pp. 968-978 ◽  
Author(s):  
V. Bharath ◽  
D.H. Ashita ◽  
V. Auradi ◽  
Madeva Nagaral

Al2O3 may be the most important reinforcement in aluminum-based composites that are rising quickly in modern years. The significance of this paper is to study the influence of Al2O3p size variation (i.e. 53 µm and 88 µm) and content (i.e. 9, 12, and 15Wt %) on density, hardness, tensile strength, elongation to fracture and wear studies. During the preparation of each composite, the ceramic reinforcements were introduced in a novel way which involves two-stage additions of reinforcements during liquid stirring. It has been found that because the size of the Al2O3p is reduced, measurement of the density showed that 2014Al-Al2O3p composites contained slight porosity and also the quantity of porosity among the prepared composites higher with diminishing the Al2O3p size and increasing weight percentage of Al2O3p. In addition to this, the results show that by decreasing the Al2O3p size and increasing the weight proportion of the Al2O3p the tensile strength and hardness of the prepared composites increase. Microstructural characterization carried out for the 2014Al-Al2O3 composites using scanning electron microscopy (SEM) which showed a fairly homogeneous distribution of Al2O3p with grain refinement of the matrix. Wear test is conducted for the prepared composites by utilizing a computerized pin on disc wear testing machine which shows greater wear resistance property as the size of the Al2O3p reduced.

An investigational analysis was conducted to study the effect of basalt/curaua hybrid composite focusing on wear properties. The hybrid composites are fabricated by resin transfer molding and the tests are conducted by pin on disk as per ASTM G99. Basalt/Curaua relative fiber weight percentage as 0/100,40/60, 60/40, 100/0 are fabricated and analyzed for abrasion wear resistance. Specimens are tested for the load of 50N at 1 m/s using Pin on Disc wear testing machine by varying abrading distance. Worn out surfaces of the abraded composites are studied by using scanning electron microscopy (SEM) and Fourier- transform infrared spectroscopy (FTIR). Roughness of the worn and pure surfaces is also accounted to measure significance of hybridization on tribological properties of the hybrid composites. Result shows that coefficient of friction is increasing in higher the curaua fiber in hybrid composites. Morphology evident the wear mechanism and internal compatibility of hybrid fibers.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Y. Zhou ◽  
J. H. Hu ◽  
B. Tan ◽  
Y. Jiang ◽  
Y. F. Tang

Summary Sealing is a technical bottleneck that affects drilling efficiency and cost in deep, difficult-to-drill formations. The spiral combination seal with active sand removal performance is a new type of seal, and the wear mechanism is not clear, resulting in no effective design. In this study, the wear properties of materials were measured by a friction-and-wear testing machine, and the measurement methods and criteria of wear loss and friction coefficient were established. The fitting function of working condition and friction coefficient was studied by fitting regression method. The law of influence of working conditions on friction coefficient and wear amount was determined. The actual wear model and evaluation criteria of wear condition were established by using wear test data and geometric relationship. The relationship among working conditions, contact stress, and wear depth is determined by numerical simulation method, and the wear mechanism of the new seal is revealed, which provides a theoretical basis for its application.


2014 ◽  
Vol 616 ◽  
pp. 270-274
Author(s):  
Yoon Seok Lee ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Kengo Narita ◽  
Junko Hieda ◽  
...  

The wear mechanisms of conventional Ti–6Al–4V extra-low interstitial (Ti64) and the new Ti–29Nb–13Ta–4.6Zr (TNTZ) were studied to investigate the wear properties of Ti64/TNTZ for application in spinal fixation devices. Ti64 and TNTZ balls and discs were first prepared as wear-test specimens. A ball-on-disc frictional wear-testing machine was used in air to perform the frictional wear tests of the Ti64 and TNTZ discs mated against Ti64 and TNTZ balls. The wear mechanisms were investigated using a scanning electron microscopy to analyze the worn surfaces and wear debris. The volume losses for the TNTZ discs were larger than those for the Ti64 ones, regardless of the mating ball material. Furthermore, the morphologies of the wear tracks and the debris of the Ti64 and TNTZ discs were different, suggesting that the wear mechanisms for the Ti64 and TNTZ discs were abrasive and delamination wear caused by mild and severe subsurface deformations of the Ti64 and TNTZ, respectively, regardless of the mating ball material.


2020 ◽  
Vol 37 ◽  
pp. 37-45
Author(s):  
Eshan S. Agrawal ◽  
Vinod B. Tungikar

TiC particles are reinforced with Al 7075 to develop metal matrix composite. Special purpose die is fabricated for centrifugal casting machine for the preparation of composite material. The tribological properties such as wear rate and coefficient of friction are determined by using pin on disc wear testing machine. Weight percentage of TiC, applied load, sliding distance are considered as parameters for the wear test. The results show that the wear resistance of the developed composite increases with increase of TiC percentage. Wear rate of Al-TiC composite is observed to be reduced by 11%, 31% and 42% with increasing percentage of TiC by 2.5%, 5% and 7.5% respectively. SEM and EDS analysis are used for morphological study of the worn surfaces of composite. Keywords: Composites, Al-TiC, Wear, Coefficient of Friction (CoF), SEM


2019 ◽  
Vol 22 (2) ◽  
pp. 143-150
Author(s):  
Hussain J. M. Al-Alkawi ◽  
Abduljabbar Owaid Hanfesh ◽  
Saja Mohammed Noori Mohammed Rauof

This research is devoted to study the influence of different weight percent concerning to the additions of Ti and Cu on mechanical and tribological properties of AA6061. The composite materials consist of different weight percentage of Ti (0.2, 0.4, and 0.6) wt% and constant weight percentage of Cu (0.2) wt% which were fabricated by liquid metallurgy route technique. Microstructural characterization and phases have been examined by using SEM (scanning electron microscopic).SEM examination showed uniform distribution of nano Ti and Cu in AA6061. The consequences of mechanical tests demonstrated clear enhancement in mechanical properties, such as ultimate tensile strength, yield strength, young modulus, ductility% and hardness at additive percentage of 0.4% Ti+0.2%Cu nano particles incorporated into molten AA6061. Percentage of enhancement ultimate tensile strength is about 73.3%, yield strength about 82.7%, young modulus is about 21.2%, the  Vickers hardness about 42.6% and the decreasing in ductility was about 25.2% compared with the metal matrix (AA6061). The wear rate test was performed by using pin on disc rig for both hybrid nano composite and base metal (AA6061) under various loads (10,15and 20) N with sliding speed (1.282) m/sec at a (10) min’s time. The results showed a decrease in wear rate at 0.4%Ti+0.2%Cu compared with the base metal (AA6061). Improvement percentage of wear rate is about 105% at 20 N load.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850173 ◽  
Author(s):  
S. JEYAPRAKASAM ◽  
R. VENKATACHALAM ◽  
C. VELMURUGAN

This research work focuses about fabrication and investigation on the influence of Titanium Carbide (TiC)-graphite particles reinforcement in wear behavior of Aluminium Matrix Composites (AMC). The stir casting technique was used to fabricate AMC reinforced with various weight percentage of TiC and graphite particles. Wear tests were conducted by using pin-on-disc wear testing machine. The hardness of the hybrid composites were recorded on the test specimen. The worn out surfaces of composites were analyzed using Scanning Electron Microscope (SEM). Results reveal that the presence of TiC and graphite particles improved the wear resistance. The wear of composite is primarily due to delamination and abrasion. The graphite particles serve as the solid lubricant on the wear of composite. The hardness of composite is improved with the decrease in weight percentage of graphite. SEM images reveal that the reinforcement particles in the matrix are homogeneously distributed. Also, worn-out surfaces of the composite were studied to observe wear track and wear mechanisms like plowing grooves, crack or cutting, and fragmentation.


2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2012 ◽  
Vol 476-478 ◽  
pp. 686-690 ◽  
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Bing Hua Jiang ◽  
Yi San Wang

This study dealt with the processing, microstructure and wear behavior of vanadium carbide reinforced iron matrix composite. Powder technology combined with in situ synthesis was used to successfully fabricate the composite. The microstructure of the composite was characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. The microstructural study reveals that the round VC particles are distributed uniformly in the iron matrix, the interface between the iron matrix and VC is clean, and no interface precipitates is found. Dry-sliding wear behavior of VC-Fe composite was tested using MM-200 wear testing machine. The results indicate that the composite has excellent wear resistance, and microploughing and grooving are the dominant wear mechanisms for the composite. Hardness and bend strength of the composite are 62HRC and 990.1MPa, respectively.


2014 ◽  
Vol 984-985 ◽  
pp. 319-325 ◽  
Author(s):  
V. Bharath ◽  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

In the current investigation an attempt has been made and to produce ceramic Al2O3particulate reinforced 6061Al matrix composites by liquid metallurgy route (stir casting technique) and to study the dry sliding wear properties of the prepared composites. The amount of ceramic Al2O3particulate reinforcement addition was maintained at 9 and 12wt%. During the preparation of each composite the ceramic reinforcements were introduced in a novel way which involves three stage additions of reinforcements during melt stirring. The wear tests were conducted using pin on disc wear testing machine on 6061Al matrix before and after addition of Al2O3reinforcements Wear test results demonstrated the superior wear resistance of the composites over monolithic 6061Al alloy matrix. Key Words: MMC’s, Al2O3particulates, 6061Al, stir-casting


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document