scholarly journals Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process

2021 ◽  
Vol 49 (3) ◽  
pp. 719-725
Author(s):  
Veljko Petrović ◽  
Vladimir Buljak ◽  
Aram Cornaggia

This paper investigates the influence of temperature field non-uniformity on sintering simulation results using the Skorohod-Olevsky viscous sintering model. As a difference to previous studies, here a thermal transient analysis is performed to provide a detailed temperature field over the component within sintering time. Results obtained using uniform temperature distribution are compared to those obtained using a nonuniform distribution derived from a transient thermal analysis. Results are compared for different geometry sizes, that lead to different temperature non-uniformity levels. The study has shown that the temperature nonuniformity cannot always be neglected and should be considered as a possible source of modeling error.

2021 ◽  
Vol 21 (11) ◽  
pp. 293
Author(s):  
Shan-Xiang Wei ◽  
De-Qing Kong ◽  
Qi-Ming Wang

Abstract The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector, which will dramatically reduce the aperture efficiency of a radio telescope. To study the non-uniform temperature field of the main reflector of a large radio telescope, numerical calculations including thermal environment factors, the coefficients on convection and radiation, and the shadow boundary of the main reflector are first discussed. In addition, the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis. The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven, and the maximum of the root mean square temperature is 12.3°C. To verify the simulation results, an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day. At the same time, some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure. It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement, and the cosine similarity between the simulation and the measurement is above 90%. Despite the inevitable thermal imaging errors caused by large viewing angles, the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent. The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation. It is credible to calculate the temperature field of the main reflector through the finite element method. This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.


2012 ◽  
Vol 57 (4) ◽  
pp. 1111-1116 ◽  
Author(s):  
M. Maj ◽  
W. Oliferuk

In the present paper the onset of plastic strain localization was determined using two independent methods based on strain and temperature field analysis. The strain field was obtained from markers displacement recorded using visible light camera. In the same time, on the other side of the specimen, the temperature field was determined by means of infrared camera. The objective of this work was to specify the conditions when the non-uniform temperature distribution can be properly used as the indicator of plastic strain localization. In order to attain the objective an analysis of strain and temperature fields for different deformation rates were performed. It has been shown, that for given experimental conditions, the displacement rate 2000 mm/min is a threshold, above which the non-uniform temperature distribution can be used as the indicator of plastic strain localization.


2020 ◽  
Vol 10 (7) ◽  
pp. 2445
Author(s):  
Deshen Chen ◽  
Hongliang Qian ◽  
Huajie Wang ◽  
Wucheng Xu ◽  
Jingfang Li

The temperature of spatial structures under construction can have a significant non-uniform distribution induced by intense solar radiation. This temperature distribution affects the component assembly and results in closure difficulties, potentially causing safety hazards. A spatial grid structure model was designed and subjected to temperature field test under sunlight to study the temperature distribution of the structure and for comparison with numerical simulation methods. The distribution characteristics and the time-varying laws were analyzed based on the test data. Then, the ray-casting algorithm was introduced to analyze the shadow influence between members, so that the temperature distribution of the model was simulated accurately, which was verified by the test data. The results show that the spatial grid structure had an obvious non-uniform temperature distribution, with a maximum temperature rise of 16 °C when compared with ambient temperature and a maximum temperature difference between members of 11 °C. The variation laws were gained both from the test and the numerical simulation. The numerical simulation method proposed herein can be used to calculate the shadow distribution and the temperature field of the structure effectively. The research methods and conclusions can provide valuable references for thermal design, monitoring, and control of spatial grid structures.


2015 ◽  
Vol 667 ◽  
pp. 244-249
Author(s):  
Hui Qiu ◽  
Yong Gang Zhu ◽  
Li Zhang

Powder metallurgy is a technology process that the powder is pressed and sintered to get the metal and composite products. The sintering temperature is one of the main technology parameters of pressing sintering. In significant measure, the sintering temperature determines the organization and geometry size of the material, which directly affects the performance of the material. This paper takes magnesium powder metallurgy sintering material as the research object, studying the transient thermal analysis with the ANSYS finite element software, systematic researching the sinter temperature field and thermal stress field of sintered body in the sintering process, and observing in the corresponding distribution of stress field and deformation under different sintering temperature distribution graph. Temperature field and thermal stress field are the main factors affecting the quality of the sintered body in sintering process. Uneven temperature distribution will cause larger thermal stress. When the thermal stress exceeds a certain limit, the sample will be deformed. With the temperature increases, the sintering temperature difference increases, the stress distribution in the constantly changes. The stress and deformation is not entirely visible for sintered body, the deformation and cracking will be side by side in the sintering process. Therefore, theory of temperature field and thermal stress distribution are studied and discussed in certain sintering processing, the sintering process optimization can be designed to provide quantitative basis of the theoretical analysis.


2011 ◽  
Vol 314-316 ◽  
pp. 626-629 ◽  
Author(s):  
Ci Jun Shuai ◽  
Pei Feng ◽  
Cheng De Gao ◽  
Ying Zhou ◽  
Shu Ping Peng

A three-dimensional finite element model has been created to study the change rules of temperature field during the laser sintering process of nano-hydroxyapatite powder. The numerical simulation of temperature distribution has been achieved based on the equivalence between the sintering time and the sintering speed. The simulation results show that the temperature declines gradually along the radial direction of the laser spot. At the same time, there was the largest temperature gradient at the edge of the laser spot. The temperature of sintering layer rises with the increase of laser power linearly when the other process parameters are the same. The maximum sintering temperature is 1320°C with laser power of 8.75W, laser spot diameter of 4mm, sintering time of 5s and layer thickness of 0.2mm. The test results verify that nano-hydroxyapatite powder could be sintered under this process condition. It shows that the finite element model can be used to simulate the temperature field during the laser sintering process.


2011 ◽  
Vol 675-677 ◽  
pp. 987-990
Author(s):  
Ling Tang ◽  
Xu Dong Wang ◽  
Hai Jing Zhao ◽  
Man Yao

In this paper, the flow, heat transfer and stress during solidification process of the machine tool bed weighed about 2.5ton that has been optimized by structural topologymethod, was calculated with ProCAST software, and the causes of the crack forming in the casting of the machine tool bed was analysed. According to the calculation results, the structural design of the local part where cracks tends to form has been improved, and the heat transfer and the stress are calculated again. By comparing the temperature field with filling of molten cast iron and without filling, it has been found that there was little effect of filling on the results of temperature distribution of the cast, therefore the effect of filling can be ignored in the following temperature field calculation to save computation time. The model has been simplified in the stress field calculation with considering the complexity of the machine tool bed and the cost of computation. Then, the merits and demerits of the original design and the improved design are compared and analyzed depending on the calculated temperature and stress results. It is suggested that the improved one could get a more uniform temperature distribution and then the trend of the crack occurring can be greatly reduced. These results could provide a guide for the actual casting production, achieving the scientific control of the production of castings, ensuring the quality of the castings.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 438
Author(s):  
Shuwei Yang ◽  
Bingliang Liang ◽  
Changhong Liu ◽  
Jin Liu ◽  
Caisheng Fang ◽  
...  

The (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 [(1–x)CLT-xNMT, x = 0.35~0.60] ceramics were prepared via microwave sintering. The effects of sintering temperature and composition on the phase formation, microstructure, and microwave dielectric properties were investigated. The results show that the microwave sintering process requires a lower sintering temperature and shorter sintering time of (1–x)CLT-xNMT ceramics than conventional heating methods. All of the (1–x)CLT-xNMT ceramics possess a single perovskite structure. With the increase of x, the dielectric constant (ε) shows a downward trend; the quality factor (Qf) drops first and then rises significantly; the resonance frequency temperature coefficient (τf) keeps decreasing. With excellent microwave dielectric properties (ε = 51.3, Qf = 13,852 GHz, τf = −1.9 × 10−6/°C), the 0.65CLT-0.35NMT ceramic can be applied to the field of mobile communications.


Sign in / Sign up

Export Citation Format

Share Document