scholarly journals DESIGN AND FABRICATION OF ELECTRIC BIKE WITH SLIDING FRAME

Author(s):  
Wirawan Sumbodo ◽  
Wahyudi ◽  
Rizki Setiadi ◽  
Kriswanto ◽  
Febrian Arif Budiman

Transportation is important for humans. Generally, the means of transportation use machines that can pollute the environment. The use of fuel oil which is used as a driving force for vehicles can be the main cause of the release of various pollutants. Emissions generated by internal combustion engines can cause many losses. Losses due to emissions include losses on health, the environment, and economic impacts. Besides, the amount of fuel oil resources is decreasing every year. For that to anticipate this need development electric bike. The campus environment, especially that of the more established universities, has entered the public consciousness as being a haven for electric bike use. The main advantages of electric bikes are economical and environmentally friendly. The objectives of this study were (1) to design an electric bike, (2) to analyze the strength of the sliding frame of an electric bike, (3) to test the distance traveled by an electric bike. The research method used research and development. The results of the research are (1) an electric bike design with a sliding frame has been created, (2) the results of the frame analysis using iron material, the von mises stress 49.98 MPa, a maximum displacement of 0.125 mm, and a safety factor is 3. (3) Based on the test track, an electric bike using a sliding frame can travel a distance of 75 km with a maximum speed of 25 km/hour.

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 255 ◽  
Author(s):  
José Ignacio Rojas-Sola ◽  
Eduardo De la Morena-De la Fuente

This article analyzes an olive oil mill formed of four conical stones used in the milling of the olive. To this end, a study of computer-aided engineering (CAE) was carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite-element method (FEM) of the three-dimensional (3D) model of the mill under real operating conditions. The results obtained revealed that the conical stones mill was a very robust machine. When studying the assembly in the most unfavorable situation (blockage of one of its millstones), we observed that the element with the highest von Mises stress was the bearing nut, reaching a value of 263.9 MPa, which was far from the elastic limit of cast iron (758 MPa). On the other hand, the machine hardly presented any equivalent deformations or displacements that could jeopardize the operation as a whole. The maximum displacement obtained was 2.494 mm in the inertia flywheel, and the equivalent deformations did not reach 0.1% of the part dimension. Similarly, the element with the lowest safety coefficient (2.87) was the same bearing nut with the highest von Mises stress, although the next element with the second lowest safety coefficient had a value of 8.69, which showed that the set was clearly oversized. These results demonstrate the convenience of redesigning the set in order to resize some of its elements, and that they could have lower safety coefficients of between 2 and 4. After an initial analysis, the resizable elements would fundamentally be those related to the movement transmission system and the frame structure.


2020 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Ardi Noerpamoengkas ◽  
Miftahul Ulum ◽  
Ahmad Yusuf Ismail

Statics and frequency analyzes are important because the structure can support the static and dynamic loads. Most studies about the statics and frequency are not included the gravity load. The previous studies of gravity effect to the cantilever beam included the hanging, horizontal, and inverted positions. The gravity load direction is applied referred to the longitudinal and lateral beam directions in this study. The closer to the inverted position the smaller the natural frequency. The highest values of the maximum displacement and the maximum Von-Mises stress are happened if longitudinal position is horizontal and lateral orientation angle is 0°. The change of lateral orientation angle does not influence the natural frequency in this condition. Keywords—Cantilever beam, gravity load, natural frequency, orientation angle, statics


Author(s):  
Minyan Yin ◽  
Jun Li ◽  
Liming Song ◽  
Zhenping Feng

The aerodynamic and mechanical performance of the last stage was numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solution and Finite Element Analysis (FEA) coupled with the one-way and two-way fluid-structure interaction models in this work. The part-span damping snubber and tip damping shroud of the rotor blade and aerodynamic pressure on rotor blade mechanical performance was considered in the one-way model. The two-way fluid-structure interaction model coupled with the mesh deformation technology was conducted to analyze the aerodynamic and mechanical performance of the last stage rotor blade. One-way fluid-structure interaction model numerical results show that the location of nodal maximum displacement moves from leading edge of 85% blade span to the trailing edge of 85% blade span. The position of nodal maximum Von Mises stress is still located at the first tooth upper surface near the leading edge at the blade root of pressure side. The two-way fluid-structure interaction model results show that the variation of static pressure distribution on long blade surface is mostly concentrated at upper region, absolute outflow angle of long blade between the 40% span and 95% span reduces, the location of nodal maximum displacement appears at the trailing edge of 85% blade span. Furthermore, the position of nodal maximum Von Mises stress remains the same and the value decreases compared to the oneway fluid-structure model results.


2012 ◽  
Vol 197 ◽  
pp. 174-178 ◽  
Author(s):  
Xin Hua Wang ◽  
Xiu Xia Cao ◽  
Shu Wen Sun ◽  
Yan Gao

The main components of the opposed biconinal cone screw high-pressure seawater hydraulic pump is the rubber bush and metal cone screw, and the interaction of the bush and cone screw is one of the main factors affecting the novel pump performance. The deformation and stress of the bush and cone screw under the initial interference is analyzed by the nonlinear finite element analysis. The analysis shows that: under the effect of the initial interference, large displacement is present to the radial surface of the cone screw, and the displacement of the radial surface mainly affects the displacement vector sum of the cone screw, and the deformation decreases gradually from the middle to the ends of the cone screw, while the cone screw is bending; the deformation in three direction of the bush is close to each other, but the location of the maximum displacement in each direction is different; with the shrink range increasing, the deformation of the cone screw and bush increases, but the deformation of the cone screw is much smaller than that of bush, so the deformation of the bush mainly affects the seal between the cone screw and bush, and the shrink range between the cone screw and bush decreases because of the deformation of the bush. Over the role of the interference force, the maximum von mises stress of the cone screw is an order larger than that of bush, and the maximum von mises stress both increases with the shrink range increasing; although shrink range is different, the location of the maximum von mises about the cone screw and bush is the same.


2018 ◽  
Vol 2 (1) ◽  
pp. 37-44
Author(s):  
Sharuddin Mohd Dahuri ◽  

This paper presents the structure and static model of engine camshaft analysis. For the purposes of this analysis, the finite element method is used. Camshaft is one of the critical components for effective and precise work of internal combustion engines. This camshaft rotates at high speed causing pressure and vibration in the system. Camshafts are also subject to varying fatigue burden due to cam plunger contact. These precise values are required to be determined to prevent failure in the camshaft. The objective of the project is to model and to perform pressure analysis on the camshaft machine. In this project the standard engine camshafts are modeled and analyzed using the CATIA V5R21 software respectively. This model is created by the basic requirements of the engine. It is done with an existing background, such as the power of acting on cam by means of a valve while running at maximum speed. Here the approach becomes fully CAE based. CAE-based approaches enrich Research and limit the time span. A study was conducted to predict the behavior of the different camshafts structure of the material using the finite three-dimensional pressure of the element. Four types of materials such as Steel, Titanium, Aluminum and Magnesium are taken into account. FEA Stress and maximum displacement decisions are calculated and compared to all of the above materials. The conclusion is to focus on the material suitable for the camshaft to reduce the maximum displacement and weight. Titanium materials become the best material for camshaft manufacturing based on analysis.


2020 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Ardi Noerpamoengkas ◽  
Miftahul Ulum ◽  
Ahmad Yusuf Ismail

Statics and frequency analyzes are important because the structure can support the static and dynamic loads. Most previous studies of statics and frequency did not involve the gravity load. The previous studies of gravity effect to the cantilever beam included the hanging, horizontal, and inverted positions. The gravity load direction is applied referred to the longitudinal and lateral beam directions in this study. The closer to the inverted position the smaller the natural frequency. The highest values of the maximum displacement and the maximum Von-Mises stress are happened if longitudinal position is horizontal and lateral orientation angle is 0°. The change of lateral orientation angle does not influence the natural frequency in this condition. Keywords—Cantilever beam, gravity load, natural frequency, orientation angle, statics


2021 ◽  
Author(s):  
Jixing Fan ◽  
Xiangyu Xu ◽  
Fang Zhou

Abstract Background Patients with a lateral femoral wall (LFW) fracture were reported to have high rates of re-operation and complication. Although the LFW thickness was a reliable predictor of post-operative or intra-operative LFW fracture, no biomechanical studies had evaluated the critical stress distributions on the femur and screws of intertrochanteric fractures treated with dynamic hip screw (DHS). This study aimed to investigate the biomechanical performance of intertrochanteric fractures with different LFW thickness treated with DHS device.Methods A three-dimensional model of the proximal femur was established by computed tomography images. The intertrochanteric fracture model with three different LFW thickness (10mm, 20.5mm and 30mm respectively) was created, which was fixed by DHS. The von Mises stress on the proximal femur, lateral femoral wall, DHS and the total displacement of the device components were evaluated and compared for three different LFW thickness model.Results The maximum von Mises stress in the proximal fragment of the 10mm and 20.5mm model increased by 80.56% and 57.97% when compared with the 30mm model. The peek von Mises stress around the blade entry point of the 10mm and 20.5mm model increased by 89.26% and 66.39% when compared with the 30mm model. The peek von Mises in the DHS located near the junction of the barrel and side plate of each model and the 30mm model had the smallest von Mises stress compared with the other two models. Furthermore, the maximum displacement in the 30mm model was much smaller than that in the10mm model and 20mm model.Conclusions The intertrochanteric fracture with a thinner LFW tended to have a higher risk of LFW fracture stabilized by a DHS device. Thus, the intertrochanteric fractures with a thinner LFW should not be treated by DHS alone and the intramedullary nail or an addition of trochanteric stabilization plate(TSP) was recommended.


Author(s):  
Soroush Rafiei ◽  
Amir Nourani ◽  
Mahmoud Chizari

This paper aims to identify an optimum bone fracture stabilizer. For this purpose, three design variables including the ratio of the screw diameter to the plate width at three levels, the ratio of the plate thickness to the plate width at three levels, and the diameter of the bone at two levels were selected for analysis. Eighteen 3D verified finite element models were developed to examine the effects of these parameters on the weight, maximum displacement and maximum von Mises stress of the fixation structure. Considering the relations between the inputs and outputs using multivariate regression, a genetic algorithm was used to find the optimal choices. Results showed that the diameter of the bone and the amount of load applied on it did not have a significant effect on the normalized stresses on the structures. Furthermore, in all ratio of the plate thickness to the plate width, as the ratio of the screw diameter to the plate width increased, the amount of stress on the structure decreased. But, by further increasing the ratio of the screw diameter to the plate width, the amount of stress on the structure increased. On the other hand, by increasing the value of the ratio of the plate thickness to the plate width, the maximum amount of stress on the structure decreased. Finally, optimal solutions in terms of the weight and the maximum amount of stress on the structure were presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia Li ◽  
Li-Cheng Zhang ◽  
Jiantao Li ◽  
Hao Zhang ◽  
Jing-Xin Zhao ◽  
...  

Purpose. A hybrid pedicle screw system for minimally invasive spinal fixation was developed based on the uniplanar pedicle screw construct and a new intermediate screw. Its biomechanical performance was evaluated using finite element (FE) analysis. Methods. A T12-L2 FE model was established to simulate the L1 vertebral compression fracture with Magerl classification A1.2. Six fixation models were developed to simulate the posterior pedicle screw fracture fixation, which were divided into two subgroups with different construct configurations: (1) six-monoaxial/uniplanar/polyaxial pedicle screw constructs and (2) four-monoaxial/uniplanar/polyaxial pedicle screw constructs with the new intermediate screw. After model validation, flexion, extension, lateral bending, and axial rotation with 7.5 Nm moments and preloading of 500 N vertical compression were applied to the FE models to compare the biomechanical performances of the six fixation models with maximum von Mises stress, range of motion, and maximum displacement of the vertebra. Results. Under four loading scenarios, the maximum von Mises stresses were found to be at the roots of the upper or lower pedicle screws. In the cases of flexion, lateral bending, and axial rotation, the maximum von Mises stress of the uniplanar screw construct lay in between the monoaxial and polyaxial screw constructs in each subgroup. Considering lateral bending, the uniplanar screw construct enabled to lower the maximum von Mises stress than monoaxial and polyaxial pedicle screw constructs in each subgroup. Two subgroups showed comparable results of the maximum von Mises stress on the endplates, range of motion of T12-L1, and maximum displacement of T12 between the corresponding constructs with the new intermediate screw or not. Conclusions. The observations shown in this study verified that the hybrid uniplanar pedicle screw system exhibited comparable biomechanical performance as compared with other posterior short-segment constructs. The potential advantage of this new fixation system may provide researchers and clinical practitioners an alternative for minimally invasive spinal fixation with vertebral augmentation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yanan Gao ◽  
Yudong Zhang ◽  
Zetian Zhang ◽  
Minghui Li ◽  
Yingfeng Sun ◽  
...  

Gas is associated with coal mining; it commonly exists in the coal seam. It is one of the major dangers during the production because its reaction between the coal masses may induce the gas-coal outburst as well as it being an expositive matter. The gas accident has caused a huge amount of property damage and casualties. Therefore, the primary precaution for coal mining is gas control. At present, drilling and extraction are the main approaches for gas accident prevention. After drilling, the ground pressure will be released; the gas which is in a free state or absorbed in the coal seam will be easy to extract as the migration channel is enhanced. Hence, one of the most concerned problems is the stress redistribution of the coal and rock mass around the borehole. In practical engineering, there are many joints distributed in the coal and rock strata, so it is necessary to investigate the effect of the drilling in the jointed coal and rock mass. In this paper, the boundary element model of the borehole in the jointed coal and rock mass is established to study the influence of joints on the stress and displacement field. The following results can be obtained. The number of joints has a significant effect on the maximum displacement of the coal and rock mass. The maximum displacement increases with the number of the joint. The position of the maximum displacement shifts from the boundary of the borehole to the far field. Meanwhile, it can be found that the displacement may reach a peak value when the joint angle is 30° and if the joint number is less than 4, and the maximum displacement may occur under the joint angle of 45° and if the joints number continuous increases. The von Mises stress has a trend of increasing with the number of joints when the joint angle is less than 30°, while it has a decreasing trend when the joint angle is larger than 30°. The max stress may occur at the joint angle of 15°. The maximum shear stress occurs mostly in the No. 4 joint and the No.7 joint. When the joint angle is 30°, the maximum shear stress occurs in the No. 3 joint and the No. 4 joint. The overlap of the position of the maximum von Mises stress or the maximum displacement with different joint angles or different numbers of joint leads to a reexploration of such positions. The position of the maximum von Mises stress and the maximum displacement o is relatively steady, which locates symmetrically around the borehole. The line between the points that behaves as the maximum von stress is approximately perpendicular to the joint direction.


Sign in / Sign up

Export Citation Format

Share Document