scholarly journals Effect of process conditions on Sandbox seed oil yield by mechanical expression: A response surface approach

2020 ◽  
Vol 45 (3) ◽  
pp. 70-81
Author(s):  
Onwe Nwabueze ◽  
Bamgboye Isaac

Cost of solvent oil extraction methods has made mechanical oil expression a desirable alternative. The effect of process variables on mechanical oil expression from sandbox seed was studied. The experimental design used for the study was a 52 Central Composite Rotatable Design of Response Surface Methodology. Experimental factors considered were: moisture content, roasting temperature, roasting time, expression pressure and expression time. Results obtained were analyzed at a0.05. The oil yield from the sandbox seed ranged from 16.38-38.68%, and was increased at processing variable ranges of (4.0-8.0%) moisture content, (80.0-90.0°C) roasting temperature, (5.0-15.0%) roasting time, (15.0-20.0 MPa) expression pressure and (6.0-8.0 min) extraction time. The maximum oil yield of 38.68% was obtained at the processing conditions of 6% moisture content, 85 °C roasting temperature, 15 min roasting time, expression pressure of 20 MPa and 8 min pressing time. Model equation relating the process variables to oil yield was developed. Coefficient of determination (R2) relating the process was 0.8908. The result showed that moisture content, roasting time, expression pressure and expression time had a significant influence on the sandbox oil yield. The results obtained in this study can serve for process and equipment designs for oil extraction from sandbox and other oilseeds and nuts.

2021 ◽  
Vol 2 (2) ◽  
pp. 434-449
Author(s):  
David ONWE ◽  
Adeleke Isaac BAMGBOYE

Optimization of process variables has become very vital in oil extraction processes to obtain maximum oil yield from oilseeds and nuts. This work focussed on the optimization of process oil extraction process from sandbox seed by mechanical expression. Effects of moisture content, roasting temperature, roasting time, expression pressure and expression time on oil yield from sandbox seed was studied using a 5×5 Central Composite Rotatable Design of Response Surface Methodology experimental design. Results obtained were subjected to Analysis of Variance (ANOVA) and SPSS statistical tool at (p = 0.05). Optimum conditions predicted were validated by experiments. All the processing factors were significant at (p = 0.05) for the sandbox oil yield except roasting temperature. The experimental results and predicted values showed low deviation (0.01-0.62). Oil yields obtained from the sandbox seed at varying process conditions varied from 16.38-38.68%. The maximum oil yield of 38.68% was obtained when the sandbox seed was subjected to process conditions of 6% moisture content, 85°C roasting temperature, 15 min roasting time, expression pressure of 20 MPa and 8 min pressing time. Mathematical equations to predict sandbox seed oil yield at varying process conditions were developed with an R2 (0.8908). The optimum extractable oil yield of 38.95% was predicted for sandbox seed at processing conditions of 7.03% moisture content, 97.72°C roasting temperature, 11.32 min roasting time, 15.11 MPa expression pressure and 8.57 min expression time. The study results provide data for designs of process and equipment for oil extraction from sandbox and other oilseeds.


2020 ◽  
Vol 117 (4) ◽  
pp. 411
Author(s):  
Zhenxing Xing ◽  
Gongjin Cheng ◽  
Zixian Gao ◽  
He Yang ◽  
Xiangxin Xue

In the iron and steel industry, improving the usage amount of New Zealand sea sand ore as a raw material for ironmaking can reduce the production costs of iron and steel enterprises to a certain extent. In this paper, the New Zealand sea sand ore without any grinding pretreatment was used as raw material, oxidized pellets were prepared by using a disc pelletizer, and the experimental conditions for preparing oxidized pellets were investigated and optimized. The effects of binder dosages, roasting temperature and roasting time on the properties of pellets were mainly investigated, and the effects of roasting temperature and roasting time on the microstructure of oxidized pellets was discussed by researching XRD patterns and SEM-EDS. With the increase of binder dosages, the drop strength of green pellets and the compressive strength of oxidized pellets were gradually increased. With the increase of roasting temperature and roasting time, the compressive strength of oxidized pellets increased gradually. When the amount of New Zealand sea sand ore was increased to 40–50%, the optimal process conditions for the preparation of oxidized pellets were as follows: the dosage of binder was 1.5%, the roasting temperature was 1200 °C, and the roasting time was 20 min.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
P. Arulmathi ◽  
G. Elangovan ◽  
A. Farjana Begum

Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD) and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD). The results showed that electrochemical treatment process effectively removed the COD (89.5%) and color (95.1%) of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl) concentration of 1.67 g/L, respectively.


This report is to investigate the effects of process variables on the solid gain, water loss using the Response surface methodology (RSM). The ginger was Osmo-dehydrated using process variables such has blanching time, the temperature for an osmotic solution, immersion, & convective drying temperature .response variables tested were solid gain and water loss. The blanching is done to inactivate the enzyme and to increase permeability in ginger candy. The optimum Osmo-convective process conditions for a maximum solid gain, water loss, and overall acceptability of honey-ginger candy were 8.39 min blanching time, 39˚Csolution temperature, 94 min immersion time, and 70˚C convective drying temperature.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1198 ◽  
Author(s):  
Jaya Tumuluru

The blending of woody and herbaceous biomass can influence pellet quality and the energy consumption of the process. This work aims to understand the pelleting characteristics of 2-inch top-pine residue blended with switchgrass at high moisture content. The process variables tested are blend moisture content, length-to-diameter (L/D) ratio in the pellet die, and the blend ratio. A flat die pellet mill was also used in this study. The pine and switchgrass blend ratios that were tested include: (1) 25% 2-inch top pine residue with 75% switchgrass; (2) 50% 2-inch top pine residue with 50% switchgrass; and (3) 75% 2-inch top pine residue with 25% switchgrass. The pelleting process conditions tested included the L/D ratio in the pellet die (i.e., 1.5 to 2.6) and the blend moisture content (20 to 30%, w.b.). Analysis of experimental data indicated that blending 25% switchgrass with 75% 2-inch top pine residue and 50% switchgrass with 50% 2-inch top pine residue resulted in pellets with a bulk density of > 550 kg/m3 and durability of > 95%. Optimization of the response surface models developed for process conditions in terms of product properties indicated that a higher L/D ratio of 2.6 and a lower blend-moisture content of 20% (w.b.) maximized bulk density and durability. Higher pine in the blends improved the pellet durability and reduced energy consumption.


2012 ◽  
Vol 524-527 ◽  
pp. 1070-1077
Author(s):  
Shao Jun Bai ◽  
Shu Ming Wen ◽  
Yu Chen ◽  
Hai Ying Shen ◽  
Dan Liu ◽  
...  

This study aimed to obtain volatile copper from a high-copper pyrite cinder by optimizing the chloridizing roasting process using response surface methodology (RSM). The effect of key parameters, i.e., dosage of CaCl2 addition, roasting time and roasting temperature, on the copper volatile ratio was investigated and a quadratic model was suggested by the methodology to correlate the variables to this volatile ratio. The results indicated that the model was in good agreement with the experimental data at a correlation coefficient (R2) of 0.9782, and the most influential parameter on efficiency was identified as the dosage of CaCl2 addition. The optimum conditions for chloridizing roasting from the high copper pyrite cinder were identified as a dosage of CaCl2 addition of 4.8 wt%, a roasting time of 19.28 min and a roasting temperature of 1151.51 °C; under such conditions, a copper volatile ratio of 97.82% was achieved. The pellets obtained by this process are characterized by a high content of hematite, and the main impurity element contents are consistent with the requirements for iron concentrate, which is suitable for use in ironmaking.


2021 ◽  
Vol 43 (2) ◽  
pp. 135-135
Author(s):  
Aman Elmi Tufa Aman Elmi Tufa ◽  
Youmin Hu Youmin Hu ◽  
Shuai Huang Shuai Huang ◽  
Wenwen Jin Wenwen Jin ◽  
Fengcheng Li Fengcheng Li

In the past decades, most researchers focus on process optimization and extraction methods to improve oil extraction from oilseeds. However, no information available on comparative analysis of different design methods to improve the process. The objective of this study was to evaluate the applicability of Latin hypercube design (LHD) and Box-Behnken Design (BBD) in oil extraction. Experimental oil yield, analysis of variance (ANOVA) of the model, and practical observation were used to compare the methods. The result shows both methods can supply adequate data for experiments. The range of oil yield is 26 – 41% for BBD and 31 – 41% for LHD. Analytically, the ANOVA result indicates that the model constructed of the LHD experiment has a better prediction of observed oil yield at a regression coefficient (R2) of 0.98 and Root Mean Square Error (RMSE) of 0.4 while BBD has R20.87 and RMSE 1.4. From the experiment result, BBD is more suit to design, efficient, and easier to extract oil. LHD has better design options, more flexible but less efficient in the experiment. For the given process conditions, theresult comparison empirically analyzed suggests both methods can be applied for oil extraction.


2012 ◽  
Vol 2 (1) ◽  
pp. 41-52
Author(s):  
Kurnia Herlina Dewi ◽  
Meizul Zuki ◽  
Mulad Subagio

This study aims to determine the effect of temperature and roasting time the quality of cocoa powder by SNI, to determine the effect of roasting time (100oC and 115oC) for the quality of cocoa powder (physical, chemical, biological, and organoleptic) and to determine the effect of roasting time : 30, 60, 90 and 120 minutes of quality cocoa powder. Variables in this study to determine the quality of cocoa powder consists only of fat content, moisture content, pH, microbial contamination is the number of colonies of bacteria, fungi, Escherichia coli, refinement, and organoleptic properties of the cocoa powder. Results obtained show the temperature effect and long penyangraian penyangraian nibs cocoa powder quality results as a whole meet the quality standards. Effect of roasting temperature to produce quality cocoa powder on the observation variables (pH, moisture content, fat content) and different organoleptic properties, whereas the level of tenderness, microbial contamination, cocoa powder is no different. The effect of roasting time to produce quality cocoa powder on the observation variables (pH, moisture content, fat content) and different organoleptic properties. The level of tenderness and microbial contamination non-significant.


Author(s):  
Yuli Setyo Indartono ◽  
Heriawan Heriawan ◽  
Ika Amalia Kartika

The oil extraction of Calophyllum seeds using a conventional single screw press leads to an inferior yield and is perceived to be less efficient as well as difficult to operate. An innovative and flexible single screw press was, therefore, designed and investigated in this study to solve these problems. Moreover, the effects of the seeds’ moisture content, pressing temperature and seeds’ feed rate on the oil yield and quality were identified to determine the optimal oil extraction performance from the Calophyllum seeds. The study found that the seeds’ moisture content, pressing temperature and seeds’ feed rate generally affected the oil yield. The yield indeed improved as the pressing temperature and the seeds’ feed rate increased respectively from 45 to 75°C and 1.5 to 5 kg·h<sup>–1</sup>. The oil yield also ameliorated as the seeds’ moisture content rose from 1.7 to 12.8%, but it was optimal when the seeds’ moisture content was 5.5%. The best oil yield of 80.6% was, thus, obtained with the seeds’ moisture content of 5.5%, a pressing temperature of 75°C and the seeds’ feed rate of 5 kg per h. Although the quality of the crude oil was poor with a high viscosity (³ 94 mm<sup>2</sup>·s<sup>–1</sup>) and high acid value (³ 48 mg KOH/g), its density, saponification and iodine values were acceptable. After the oil refining process by degumming and neutralisation, its quality improved and met the Indonesian Biofuel Standards, except for its viscosity.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 540
Author(s):  
Abraham Kabutey ◽  
Čestmír Mizera ◽  
Oldřich Dajbych ◽  
Petr Hrabě ◽  
David Herák ◽  
...  

In the present study, a Box–Behnken design of response surface methodology (RSM) was employed to optimize the processing factors (force: 100, 150, and 200 kN; speed: 3, 5, and 7 mm/min; and temperature: 40, 60, and 80 °C) for extracting pumpkin seeds oil under uniaxial compression. The design generated 15 experiments including twelve combinations of factors and three replicates at the center point. The responses: oil yield (%), oil expression efficiency (%), and energy (J) were calculated, and the regression models determined were statistically analyzed and validated. The optimum factors combination: 200 kN, 4 mm/min and 80 °C predicted the oil yield of 20.48%, oil expression efficiency of 60.90%, and energy of 848.04 J. The relaxation time of 12 min at the optimum factors increased the oil efficiency to 64.53%. The lower oil point force was determined to be 57.32 kN for estimating the maximum oil output. The tangent curve and generalized Maxwell models adequately (R2 = 0.996) described the compression and relaxation processes of pumpkin seeds oil extraction. Peroxide value increased with temperatures. The study provides detailed information useful for processing different bulk oilseeds under uniaxial loading for optimizing the mechanical oil pressing in large-scale oil production.


Sign in / Sign up

Export Citation Format

Share Document