Experimental Force Coefficients for a Parametric Series of Spinnakers

2003 ◽  
Author(s):  
William C. Lasher ◽  
James R. Sonnenmeier ◽  
David R. Forsman ◽  
Cheng Zhang ◽  
Kenton White

A parametric series of eight spinnaker models was built and tested in a wind tunnel according to the theory of statistical Design of Experiments. In these models, three sail shape parameters were varied - cross section camber ratio, sail aspect ratio, and sweep. Lift and drag forces were measured for a range of angles of attack, and the thrust force coefficient was determined as a function of apparent wind angle for each of the eight sails. It was found that flat spinnakers are faster than full spinnakers and that spinnakers with low sweep (more vertical) are faster than spinnakers with high sweep. This is consistent with general sailing practice, which maximizes projected sail area by pulling the pole back and down. The influence of aspect ratio on drag coefficient was small and within experimental error. A description of the sail shapes and corresponding force coefficients is presented for future validation of Reynolds Averaged Navier-Stokes simulations.

2007 ◽  
Vol 594 ◽  
pp. 341-368 ◽  
Author(s):  
FRANK M. BOS ◽  
D. LENTINK ◽  
B. W. VAN OUDHEUSDEN ◽  
H. BIJL

The influence of different wing kinematic models on the aerodynamic performance of a hovering insect is investigated by means of two-dimensional time-dependent Navier–Stokes simulations. For this, simplified models are compared with averaged representations of the hovering fruit fly wing kinematics. With increasing complexity, a harmonic model, a Robofly model and two more-realistic fruit fly models are considered, all dynamically scaled at Re = 110. To facilitate the comparison, the parameters of the models were selected such that their mean quasi-steady lift coefficients were matched. Details of the vortex dynamics, as well as the resulting lift and drag forces, were studied.The simulation results reveal that the fruit fly wing kinematics result in forces that differ significantly from those resulting from the simplified wing kinematic models. In addition, light is shed on the effect of different characteristic features of the insect wing motion. The angle of attack variation used by fruit flies increases aerodynamic performance, whereas the deviation is probably used for levelling the forces over the cycle.


Author(s):  
Ugur Can ◽  
Sakir Bal

In this study, it was aimed to obtain an accurate extrapolation method to compute lift and drag forces of high-speed vessels at full-scale by using CFD (Computational Fluid Dynamics) based GEOSIM (GEOmetrically SIMilar) method which is valid for both fully planing and semi-planing regimes. Athena R/V 5365 bare hull form with a skeg which is a semi-displacement type of high-speed vessel was selected with a model family for hydrodynamic analyses under captive and free to sinkage/trim conditions. Total drag and lift forces have been computed for a generated GEOSIM family of this form at three different model scales and full-scale for Fr = 0.8 by an unsteady RANS (Reynolds Averaged Navier–Stokes) solver. k–ε turbulence model was used to simulate the turbulent flow around the hulls, and both DFBI (Dynamic Fluid Body Interaction) and overset mesh technique were carried out to model the heave and pitch motions under free to sinkage/trim condition. The computational results of the model family were used to get “drag-lift ratio curve” for Athena hull at a fixed Fr number and so the corresponding results at full scale were predicted by extrapolating those of model scales in the form of a non-dimensional ratios of drag-lift forces. Then the extrapolated full-scale results calculated by modified GEOSIM method were compared with those of full-scale CFD and obtained by Froude extrapolation technique. The modified GEOSIM method has been found to be successful to compute the main forces (lift and drag) acting on high-speed vessels as a single coefficient at full scale. The method also works accurately both under fully and semi-planing conditions.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550088 ◽  
Author(s):  
Jafar Ghazanfarian ◽  
Roozbeh Saghatchi ◽  
Mofid Gorji-Bandpy

This paper studies the two-dimensional (2D) water-entry and exit of a rotating circular cylinder using the Sub-Particle Scale (SPS) turbulence model of a Lagrangian particle-based Smoothed-Particle Hydrodynamics (SPH) method. The full Navier–Stokes (NS) equations along with the continuity have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of water-entry and exit of a nonrotating circular cylinder. The numerical simulations of water-entry and exit of the rotating circular cylinder are performed at Froude numbers of 2, 5, 8, and specific gravities of 0.25, 0.5, 0.75, 1, 1.75, rotating at the dimensionless rates of 0, 0.25, 0.5, 0.75. The effect of governing parameters and vortex shedding behind the cylinder on the trajectory curves, velocity components in the flow field, and the deformation of free surface for both cases have been investigated in detail. It is seen that the rotation has a great effect on the curvature of the trajectory path and velocity components in water-entry and exit cases due to the interaction of imposed lift and drag forces with the inertia force.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
S. S. Dai ◽  
B. A. Younis ◽  
H. Y. Zhang

Predictions are reported of the two-dimensional turbulent flow around a square cylinder with rounded corners at high Reynolds numbers. The effects of rounded corners have proved difficult to predict with conventional turbulence closures, and hence, the adoption in this study of a two-equation closure that has been specifically adapted to account for the interactions between the organized mean-flow motions due to vortex shedding and the random motions due to turbulence. The computations were performed using openfoam and were validated against the data from flows past cylinders with sharp corners. For the case of rounded corners, only the modified turbulence closure succeeded in capturing the consequences of the delayed flow separation manifested mainly in the reduction of the magnitude of the lift and drag forces relative to the sharp-edged case. These and other results presented here argue in favor of the use of the computationally more efficient unsteady Reynolds-averaged Navier-Stokes approach to this important class of flows provided that the effects of vortex shedding are properly accounted for in the turbulence closure.


1968 ◽  
Vol 34 (4) ◽  
pp. 809-819 ◽  
Author(s):  
E. H. Steinberger ◽  
H. R. Pruppacher ◽  
M. Neiburger

The velocities, accelerations and drag forces experienced by two equal spheres falling along their line of centres in a viscous fluid were determined for three groups of Reynolds numbers R in the range where it is commonly assumed that Stokes's approximation applies. For all groups, with R ranging between 0·060 and 0·216, both spheres continually acclerated as they fell, and the upper sphere fell faster and accelerated more than the lower one. In contrast to Stimson & Jeffery's (1926) theory, which is based on the Stokes approximation, and to most earlier experimenters, the drag-force coefficients of the upper sphere computed from the experiments were significantly smaller than those for the lower sphere. Oseen's theory for this case agreed with the experiments in some respects, but contrary to it the drag-force coefficient varied with R for the upper sphere as well as the lower sphere.


2005 ◽  
Vol 128 (3) ◽  
pp. 520-530 ◽  
Author(s):  
James McManus ◽  
Xin Zhang

The flow around an isolated wheel in contact with the ground is computed by the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method. Two cases are considered, a stationary wheel on a stationary ground and a rotating wheel on a moving ground. The computed wheel geometry is a detailed and accurate representation of the geometry used in the experiments of Fackrell and Harvey. The time-averaged computed flow is examined to reveal both new flow structures and new details of flow structures known from previous experiments. The mechanisms of formation of the flow structures are explained. A general schematic picture of the flow is presented. Surface pressures and pressure lift and drag forces are computed and compared to experimental results and show good agreement. The grid sensitivity of the computations is examined and shown to be small. The results have application to the design of road vehicles.


2004 ◽  
Vol 127 (3) ◽  
pp. 583-594 ◽  
Author(s):  
Paul F. Fischer ◽  
Gary K. Leaf ◽  
Juan M. Restrepo

We report on the lift and drag forces on a stationary sphere subjected to a wall-bounded oscillatory flow. We show how these forces depend on two parameters, namely, the distance between the particle and the bounding wall, and on the frequency of the oscillatory flow. The forces were obtained from numerical solutions of the unsteady incompressible Navier–Stokes equations. For the range of parameters considered, a spectral analysis found that the forces depended on a small number of degrees of freedom. The drag force manifested little change in character as the parameters varied. On the other hand, the lift force varied significantly: We found that the lift force can have a positive as well as a negative time-averaged value, with an intermediate range of external forcing periods in which enhanced positive lift is possible. Furthermore, we determined that this force exhibits a viscous-dominated and a pressure-dominated range of parameters.


Author(s):  
Luca Vita ◽  
Frederik Zhale ◽  
Uwe S. Paulsen ◽  
Troels F. Pedersen ◽  
Helge A. Madsen ◽  
...  

This paper describes the recent developments regarding a new concept for deep sea offshore vertical axis wind turbines. The concept utilizes a cylindrical foundation rotating in the water. The 2D Navier-Stokes solver EllipSys2D has been used to investigate the interaction between the rotating foundation and a water flow stream passing the turbine. Lift and drag forces, and the friction moment on the rotating foundation of the turbine have been computed. The calculations are repeated for different operating conditions of the wind turbine on a range of rotational speeds. The Reynolds number, based on the diameter of the foundation, is 5×106.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
A. De Marco ◽  
S. Mancini ◽  
C. Pensa ◽  
G. Calise ◽  
F. De Luca

The concept of Flettner rotor, a rotating cylinder immersed in a fluid current, with a top-mounted disk, has been analyzed by means of unsteady Reynolds averaged Navier-Stokes simulations, with the aim of creating a suitable tool for the preliminary design of the Flettner rotor as a ship’s auxiliary propulsion system. The simulation has been executed to evaluate the performance sensitivity of the Flettner rotor with respect to systematic variations of several parameters, that is, the spin ratio, the rotor aspect ratio, the effect of the end plates, and their dimensions. The Flettner rotor device has been characterized in terms of lift and drag coefficients, and these data were compared with experimental trends available in literature. A verification study has been conducted in order to evaluate the accuracy of the simulation results and the main sources of numerical uncertainty. All the simulation results were used to achieve a surrogate model of lift and drag coefficients. This model is an effective mathematical tool for the preliminary design of Flettner rotor. Finally, an example of assessment of the Flettner rotor performance as an auxiliary propulsion device on a real tanker ship is reported.


Author(s):  
Sajid Ali ◽  
Sang-Moon Lee ◽  
Choon-Man Jang

Tangential force is the most important parameter for driving the blade of a straight bladed H-Darrieus wind turbine forward. The direction of this force is very critical as it may move the blade forward (positive force) or it can also oppose the rotation (negative force). The direction of tangential force depends upon the distribution of two fundamental aerodynamic forces around the wind turbine blade i.e. Lift and drag. Current study aims to understand the impact of lift and drag forces on the tangential force variation with respect to (w.r.t) azimuth position. Commercial CFD software SC/tetra was employed in order to solve the unsteady Reynold-averaged Navier stokes (URANS) equations around the blades. Results show that very small portion (maximum 20% during rotation) of the drag force is actually converted into useful tangential force whereas rest of the drag force is converted into either normal force or negative tangential force (waste of energy). On the other hand, out of all the generated lift force, 70–90 percent is seemed to be beneficial for moving the blade forward and rest of the lift force also tries to oppose the motion (almost 15%). Overall, it was found that only 50–60 percent of the resultant force (lift + drag) acting on the blade, is actually useful to move the blade forward. The study was conducted at seven different tip speed ratios (TSRs) i.e. 1, 2, 2.28, 3, 3.5, 4 and 5 with NACA 0015 airfoil. Relatively higher fluctuations were observed in the distribution of forces at low values of TSRs (1 and 2) as compared to high values of TSRs (4 and 5). The results presented here are only limited to NACA 0015 whereas same methodology can be adopted for other blade profiles in future as well.


Sign in / Sign up

Export Citation Format

Share Document