Inhibitory effect of buprofezin on the larval growth and development of Spodoptera litura (F.)

2020 ◽  
Vol 82 (1) ◽  
pp. 20
Author(s):  
Mst Rokeya Khatun ◽  
Gopal Das ◽  
Kazi Shahanara Ahmed ◽  
Hisashi Kato-Noguchi
Author(s):  
Kuldeep Srivastava ◽  
Sonika Sharma ◽  
Devinder Sharma ◽  
Ramesh Kumar

The functional properties of marine invertebrate larvae represent the sum of the physiological activities of the individual, the interdependence among cells making up the whole, and the correct positioning of cells within the larval body. This chapter examines physiological aspects of nutrient acquisition, digestion, assimilation, and distribution within invertebrate larvae from an organismic and comparative perspective. Growth and development of larvae obviously require the acquisition of “food.” Yet the mechanisms where particulate or dissolved organic materials are converted into biomass and promote development of larvae differ and are variably known among groups. Differences in the physiology of the digestive system (secreted enzymes, gut transit time, and assimilation) within and among feeding larvae suggest the possibility of an underappreciated plasticity of digestive physiology. How the ingestion of seawater by and the existence of a circulatory system within larvae contribute to larval growth and development represent important topics for future research.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


2021 ◽  
pp. 1-14
Author(s):  
J.B. Zhang ◽  
Y. Meng ◽  
J. Xu ◽  
C. Rensing ◽  
D. Wang

The effects of four antibiotics (metronidazole (M) levofloxacin (L), sodium ampicillin (A), and streptomycin sulphate (S)) and their pair-wise combinations at three doses on the development and intestinal bacterial diversity of the black soldier fly (BSF; Hermetia illucens) larvae were studied. At a low dose M and L were able to inhibit larval growth. At a high dose, all antibiotics were shown to inhibit larval growth. However, the pair-wise combinational use of the antibiotics did not effectively enhance the inhibitory effect. The gut bacterial diversity of the normal control (NC) was significantly higher than the antibiotic-treated groups with 737 operational taxonomic units (OTUs) from the larval guts of NC, compared to 305 and 227 from ML and AS. The number of anaerobic bacteria in ML was significantly lower than in NC and AS, with the relative abundance of OTUs from larval guts of ML being only about 0.01, compared to 0.4 for NC and 0.15 for AS. These results indicated that antibiotics at the experimental concentration did not affect the palatability of food for insects, but they would affect the diversity of food and intestinal microorganisms of BSF larvae, and the inhibitory effect of antibiotics on growth and development of BSF larvae displayed in this study was a complex effect.


EKOLOGIA ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 55-62
Author(s):  
Rangga Eka S. P ◽  
Moerfiah . ◽  
Triastinurmiatiningsih .

The purpose of this study was to determine the activity of the leaf extract of Piper sarmentosum on mortality and damage levels by pest armyworm (Spodoptera litura). This research was conducted at the Laboratory of Biology, Faculty of Mathematics and Natural Sciences, Pakuan University, Bogor. This study uses a completely randomized design (CRD), with four levels of extract concentration, that is 0% as control, 30%, 40% and 50%.  Each treatment was repeated four times. The variables measured were mortality rates, the extent of damage the leaves, and larval growth. A concentration of EDK 50% showed activity in killing the armyworm by 38%. The lowest level of damage is 5%, with an average growth rate to its lowest larvae by 0.8 cm with the provision of treatment EDK 50%, and the higest level of damage is 75% by a concetration of EDK 30% treatments.


1966 ◽  
Vol 44 (5) ◽  
pp. 775-779 ◽  
Author(s):  
J. S. Barlow

Larvae of Musca domestica L. were reared on chemically defined diets to which various fatty acids were added. The concentration of lipids in the body was directly related to the amount of fatty acid in the diet. Lack of oleic acid was tantamount in the following respects to lack of all fatty acids: high concentrations of palmitic, stearic, and particularly palmitoleic acid; low concentration of oleic acid. Linoleic acid could not be detected in the body fats unless it was fed. Fats had little or no effect on rate of larval growth and development. These results are compared with the results of a previous study of the effects of dietary fatty acids on the composition of the body fats of the parasitic dipteron, Pseudosarcophaga affinis Auct. nee Fallén.


Sign in / Sign up

Export Citation Format

Share Document