Population structure and reproductive activity of Bandicota bengalensis (Gray and Hardwicke) in relation to growth stages of wheat crop

2020 ◽  
Vol 57 (1) ◽  
pp. 66
Author(s):  
Pooja Singh ◽  
Navdeep Kaur
2014 ◽  
Vol 104 (2) ◽  
pp. 150-161 ◽  
Author(s):  
Marina de Sá Leitão C. de Araújo ◽  
Deusinete de O. Tenório ◽  
Daniela da S. Castiglioni

The semi terrestrial crabs are important elements of the fauna of coastal regions. The aim of this study was to analyze the population structure of Armases angustipes (Dana, 1852) at estuaries of the Ariquindá River, considered a non impacted area, and Mamucabas River, considered a few impacted area, on the south coast of state of Pernambuco, Brazil. The species occurred in all months of the year. The number of individuals per month varied, being higher in the months of transition between the seasons. This is probably due to significant seasonal variations of air and burrow temperature and burrow salinity. There was no sexual dimorphism in size of A. angustipes in the mangrove of Ariquindá River, but males were larger than females in the mangrove of Mamucabas River. In both estuaries, the sex ratio did not differ from Mendelian proportion, but showed a deviation for females. The analysis of temporal variation in sex ratio showed significant differences in some months of the year. These variations are due to cyclical events that act distinctly on each sex. In both estuaries, size classes of carapace width were equally represented by both sexes. The ovigerous females of A. angustipes occurred only in some months of the year, especially in summer, in both estuaries. Probably the high phytoplankton productivity observed in summer favors the reproductive activity, since these algae serve as food for the larvae. Specimens of the population of Rio Ariquindá are largest and wider than those of Mamucabas River. This fact, associated with the low abundance of crabs and the lower frequency of ovigerous females observed in Mamucabas River, is an indication that this population may be influenced by the environmental impacts that this estuary has received.


2020 ◽  
Vol 8 (5) ◽  
pp. 3026-3035

Manual examination is not as accurate to examine crop growing stages because of the possibility of the human mistake and errors. While machine examination or automatic examination can easily examine crop growing stages and increase productivity because it provides fast and accurate examine result. This study provide a solution to finding the wheat crop growth stages, Once the growing stages are established, farmers can take suitable and measured steps to improve the production of wheat or other agricultural crops. For finding the growth stages of wheat digital image processing technique is used. RGB model, HSI model, mean value of green colour, hue and saturation images use for examining wheat crop.


Author(s):  
C. Naidin

In this paper, we analyze the influence of N and P fertilization on wheat yields, taking into account the previous crop and the level of rainfall accumulated until the end of the growth stages in plant development. In the wheat crops developed on the reddish-brown low luvi soil found at ARDS Simnic, the N fertilization has favorable effects in moderate doses (60 - 100 kg N/ha after corn and 60 - 90 kg N/ha after peas), while in higher doses (120 - 160 kg N/ha) fertilization determines a fall in production, both in the case of rainfall deficit and excess. The P has favorable effects on wheat crops, especially when the previous crop is peas. The rainfall quantity, as well as its repartition along the vegetation period, influences the wheat crop, causing great variations from year to year. The obtained data shows that rainfall deficit as well as rainfall excess determines a drop in wheat production; relatively high and stable average productions can be obtained in the case of rainfall levels close to the multi annual averages in different plant development stages.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ajay K. Bhardwaj ◽  
Deepika Rajwar ◽  
Rajender K. Yadav ◽  
Suresh K. Chaudhari ◽  
Dinesh K. Sharma

PurposeOne of the serious constraints for the integration of organics in soil fertility plans is the release and availability of nitrogen (N) to match the critical growth stages of a crop. The interplay between organic amendment characteristics and soil moisture conditions can significantly affect the nutrient release and availability, especially for dryland crops like wheat. In this study, the effects of integrated nutrient management strategies using diverse qualities of organic amendments on daily N mineralization and its availability to plants during the full growing season of the wheat crop were analyzed in a 10-year experiment.MethodsThe management included (1) F, inorganic fertilizers at 100% rate, compared to a reduced rate of inorganic fertilizers (55% N) supplemented with organic inputs via (2) GM, green manuring, (3) LE, legume cropping and its biomass recycling, (4) WS, wheat stubble retention, (5) RS, rice stubble retention, and (6) FYM, farmyard manure application, during the preceding rice season. Ion exchange resin (IER) membrane strips were used as plant root simulators to determine daily NH4+-N and NO3–-N availability in soil solution during the full wheat growing period.ResultsTotal available N for the full season was in the following order: GM (962 μg cm–2) > F (878 μg cm–2) > LE (872 μg cm–2) > FYM (865 μg cm–2) > RS (687 μg cm–2) > WS (649 μg cm–2). No significant differences were observed in NH4+-N availability throughout the cropping period as compared to NO3–-N which showed significant differences among management at critical crop growth stages.ConclusionLegume biomass incorporation (GM, LE) and farmyard manure (FYM) based management provided the most consistent supply equivalent to or even exceeding 100% inorganic fertilizers at several critical stages of growth, especially at tillering and stem elongation. Integration of organics in management increased nitrogen use efficiency 1.3–2.0 times, with cereal crop residue-based management having the highest efficiency followed by legume biomass incorporation.


2012 ◽  
Vol 151 (2) ◽  
pp. 201-208 ◽  
Author(s):  
S. K. LAM ◽  
D. CHEN ◽  
R. NORTON ◽  
R. ARMSTRONG ◽  
A. R. MOSIER

SUMMARYThe effect of elevated carbon dioxide (CO2) concentration on greenhouse gas (GHG) emission from semi-arid cropping systems is poorly understood. Closed static chambers were used to measure the fluxes of nitrous oxide (N2O), CO2and methane (CH4) from a spring wheat (Triticum aestivumL. cv. Yitpi) crop-soil system at the Australian grains free-air carbon dioxide enrichment (AGFACE) facility at Horsham in southern Australia in 2009. The targeted atmospheric CO2concentrations (hereafter CO2concentration is abbreviated as [CO2]) were 390 (ambient) and 550 (elevated) μmol/mol for both rainfed and supplementary irrigated treatments. Gas measurements were conducted at five key growth stages of wheat. Elevated [CO2] increased the emission of N2O and CO2by 108 and 29%, respectively, with changes being greater during the wheat vegetative stage. Supplementary irrigation reduced N2O emission by 36%, suggesting that N2O was reduced to N2in the denitrification process. Irrigation increased CO2flux by 26% at ambient [CO2] but not at elevated [CO2], and had no impact on CH4flux. The present results suggest that under future atmospheric [CO2], agricultural GHG emissions at the vegetative stage may be higher and irrigation is likely to reduce the emissions from semi-arid cropping systems.


2013 ◽  
Vol 14 ◽  
pp. 65-77
Author(s):  
Dipendra Pokhrel ◽  
Kiran Baral ◽  
Bishnu R Ojha ◽  
Surya K Ghimirey ◽  
Madhav P Pandey

Wheat crop in developing world including Nepal is grown under rainfed condition and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was conducted at Greenhouse to screen the 60 different genotypes of wheat including Nepalese landraces, commercial cultivars CIMMYT derived advanced lines, NWRP derived advanced lines, and three international drought tolerant check cultivars. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, plant height, number of tillers and biomass production. The analysis revealed significant variance between environments and among the wheat genotypes for most of these traits. A wide range of variability was observed for water use, water use efficiency, days to anthesis, plant height, number of tillers and biomass yield in both moisture stressed and non stressed environments. Gautam showed superiority than Bhrikuti and Vijaya among Nepalese cultivar for drought adaptive physiological traits. Landrace NPGR 7504 showed high level of water use efficiency and other positive traits for drought adaptation.


2014 ◽  
Author(s):  
J. Emerson Heare ◽  
Brady Blake ◽  
Jonathon P. Davis ◽  
Brent Vadopalas ◽  
Steven B. Roberts

Where restoration efforts occur, such as with Ostrea lurida in Puget Sound, Washington, it is important to consider genetic population structure. Traits that hold adaptive advantage such as reproductive timing and stress resilience may differ at local scales. Using three established populations of O.lurida within Puget Sound Washington, we performed a reciprocal transplant experiment and monitored survival, growth, reproduction. We found that performance differed for each population at each of these three metrics. O.lurida from a relatively harsh home site environment with low primary production and high dynamic habitats exhibited generally greater survival at all sites, whereas those from a relatively lush home site environment with high primary production and lower habitat dynamics exhibited generally greater reproductive activity at all sites. Populations from sites with shorter growing seasons exhibited greater growth in sites with longer growing periods, suggesting a countergradient adaptation may have occurred in these populations.


2015 ◽  
Author(s):  
J. Emerson Heare ◽  
Brady Blake ◽  
Jonathan P. Davis ◽  
Brent Vadopalas ◽  
Steven B. Roberts

For long term persistence of species, it is important to consider population structure. 28 Traits that hold adaptive advantage such as reproductive timing and stress resilience may differ 29 among locales. Knowledge and consideration of these traits should be integrated into 30 conservation efforts. A reciprocal transplant experiment was carried out monitoring survival, 31 growth, and reproduction using three established populations of Ostrea lurida within Puget 32 Sound, Washington. Performance differed for each population. Ostrea lurida from Dabob Bay 33 had higher survival at all sites but lower reproductive activity and growth. Oysters from Oyster 34 Bay demonstrated greater reproductive activity at all sites with moderate growth and survival. 35 Together these data suggest the existence of O. lurida population structure within Puget Sound 36 and provide information on how broodstock should be selected for restoration purposes.


2016 ◽  
Vol 8 (3) ◽  
pp. 1398-1403 ◽  
Author(s):  
Rajiv Rakshit ◽  
A.K. Patra ◽  
T.J. Purakayastha ◽  
R.D. Singh ◽  
Shiva Dhar ◽  
...  

A field experiment was conducted during 2010-2011 and 2011-2012 to investigate the effect of optimal (100% NPK) to super-optimal doses (200% NPK) of mineral fertilizers on soil enzymes such as dehydrogenase (DHA), acid phosphatase (Ac-PA), alkaline phosphatase (Alk-PA), fluorescien diacetate hydrolysis (FDA), urease and nitrate reductase (NRA) at three physiological stages (CRI, anthesis and maturity) of wheat crop on an Inceptisol. Dehydrogenase activity was reduced by 28-37% when fertilizer application was at super-optimal dose (200% NPK), whereas, urease and NRA responded positively in the range of 43-44% and 213-231% respectively. Alk-PAwas 7.3-7.9% higher in treatments receiving 125% NPK as compared to control (100% NPK); whereas, Ac-PA declines in the plots receiving 175 and 200% of recommended dose of fertilizer (RDF) as compared to 150% NPK levels. Addition of 175% RDF increased the FDA to the tune of 46-53% as compared to 100% NPK. A significant (P≤0.05) positive interaction between fertilizer treatments and physiological stages of wheat growth was observed on soil enzyme activities (except urease and NRA) being highest at the anthesis stage of wheat. Correlation matrix analysis showed that DHA was correlated with the studied enzyme activities except Ac-PA and FDA; whereas, strong correlation was observed between urease and NRA (r=0.981, P=0.01). This study provides theoretical and practical base for avoiding super optimal application of fertilisers which hinders the enzyme activities and vis-a-vis sustainable nutrient enrichment under rhizosphere.


Sign in / Sign up

Export Citation Format

Share Document