scholarly journals Influence of Ratio of Top and Bottom Oxide Thickness on Subthreshold Swing for Asymmetric Double Gate MOSFET

Author(s):  
Hakkee Jung
Author(s):  
Hakkee Jung

We propose an analytical model for subthreshold swing using scale length for sub-10 nm double gate (DG) MOSFETs. When the order of the calculation for the series type potential distribution is increased it is possible to obtain accuracy, but there is a problem that the calculation becomes large. Using only the first order calculation of potential distribution, we derive the scale length λ1 and use it to obtain an analytical model of subthreshold swing. The findings show this subthreshold swing model is in concordance with a 2D simulation. The relationship between the channel length and silicon thickness, which can analyze the subthreshold swing using λ1, is derived by the relationship between the scale length and the geometric mean of the silicon and oxide thickness. If the silicon thickness and oxide film thickness satisfy the condition of (Lg-0.215)/6.38 > tsi(=tox), it is found that the result of this model agrees with the results using higher order calculations, within a 4% error range.


Silicon ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1567-1574
Author(s):  
Sanjit Kumar Swain ◽  
Satish Kumar Das ◽  
Sarosij Adak

Author(s):  
Hakkee Jung

In this paper, the subthreshold swing was observed when the stacked high-k gate oxide was used for a junctionless double gate (JLDG) MOSFET. For this purpose, a subthreshold swing model was presented using the series-type potential model derived from the Poisson equation. The results of the model presented in this paper were in good agreement with the two-dimensional numerical values and those from other papers. Using this model, the variation of the subthreshold swing for the channel length, silicon thickness, gate oxide thickness, and dielectric constant of the stacked high-k material was observed using the dielectric constant as a parameter. As a result, the subthreshold swing was reduced when the high-k materials were used as the stacked gate oxide film. In the case of the asymmetric structure, the subthreshold swing can be reduced than that of the symmetric JLDG MOSFET when the dielectric constant of the bottom stacked oxide film was greater than that of the top stacked oxide film. In the case of the asymmetric structure, the subthreshold swing could be also reduced by applying the bottom gate voltage lower than the top gate voltage.


Author(s):  
Hakkee Jung

Threshold voltage roll-off is analyzed for sub-10 nm asymmetric double gate (DG) MOSFET. Even asymmetric DGMOSFET will increase threshold voltage roll-off in sub-10 nm channel length because of short channel effects due to the increase of tunneling current, and this is an obstacle against the miniaturization of asymmetric DGMOSFET. Since asymmetric DGMOSFET can be produced differently in top and bottom oxide thickness, top and bottom oxide thicknesses will affect the threshold voltage roll-off. To analyze this, <em>thermal</em><em> </em>emission current and tunneling current have been calculated, and threshold voltage roll-off by the reduction of channel length has been analyzed by using channel thickness and top/bottom oxide thickness as parameters. As a result, it is found that, in short channel asymmetric double gate MOSFET, threshold voltage roll-off is changed greatly according to top/bottom gate oxide thickness, and that threshold voltage roll-off is more influenced by silicon thickness. In addition, it is found that top and bottom oxide thickness have a relation of inverse proportion mutually for maintaining identical threshold voltage. Therefore, it is possible to reduce the leakage current of the top gate related with threshold voltage by increasing the thickness of the top gate oxide while maintaining the same threshold voltage.


Sign in / Sign up

Export Citation Format

Share Document