A Short-Channel Common Double-Gate MOSFET Model Adapted to Gate Oxide Thickness Asymmetry

2014 ◽  
Vol 61 (8) ◽  
pp. 2732-2737 ◽  
Author(s):  
Neha Sharan ◽  
Santanu Mahapatra
Author(s):  
Hakkee Jung

Threshold voltage roll-off is analyzed for sub-10 nm asymmetric double gate (DG) MOSFET. Even asymmetric DGMOSFET will increase threshold voltage roll-off in sub-10 nm channel length because of short channel effects due to the increase of tunneling current, and this is an obstacle against the miniaturization of asymmetric DGMOSFET. Since asymmetric DGMOSFET can be produced differently in top and bottom oxide thickness, top and bottom oxide thicknesses will affect the threshold voltage roll-off. To analyze this, <em>thermal</em><em> </em>emission current and tunneling current have been calculated, and threshold voltage roll-off by the reduction of channel length has been analyzed by using channel thickness and top/bottom oxide thickness as parameters. As a result, it is found that, in short channel asymmetric double gate MOSFET, threshold voltage roll-off is changed greatly according to top/bottom gate oxide thickness, and that threshold voltage roll-off is more influenced by silicon thickness. In addition, it is found that top and bottom oxide thickness have a relation of inverse proportion mutually for maintaining identical threshold voltage. Therefore, it is possible to reduce the leakage current of the top gate related with threshold voltage by increasing the thickness of the top gate oxide while maintaining the same threshold voltage.


2012 ◽  
Vol 59 (4) ◽  
pp. 1002-1007 ◽  
Author(s):  
Srivatsava Jandhyala ◽  
Rutwick Kashyap ◽  
Costin Anghel ◽  
Santanu Mahapatra

2000 ◽  
Vol 610 ◽  
Author(s):  
G. Curello ◽  
R. Rengarajan ◽  
J. Faul ◽  
H. Wurzer ◽  
J. Amon ◽  
...  

AbstractIn this work, we report on the effect of different dual gate oxide (DGox) processes on the electrical properties of CMOS devices in deep submicron embedded DRAM (eDRAM) technology. Also discussed, is the effect of N+ Ion Implantation on the diffusion / segregation behaviour of B and In channel dopants. In particular, it will be shown that the N+ dose required to obtain a certain combination of dual gate oxide thickness varies with the gate oxide process. Effects of N+ dose on the In and B channel profiles are studied using SIMS. The impact of “thickness-equivalent” DGox processes on short channel effect (SCE) and carrier mobility is analyzed and tradeoffs for optimization of device performances are discussed.


Sign in / Sign up

Export Citation Format

Share Document