scholarly journals Endophytic bacteria from potato in vitro activated by exogenic non-pathogenic bacteria

2007 ◽  
Vol 23 (1) ◽  
pp. 21-27 ◽  
Author(s):  
O. V. Podolich ◽  
P. Ardanov ◽  
T. M. Voznyuk ◽  
M. V. Kovalchuk ◽  
O. V. Danylchenko ◽  
...  
2018 ◽  
Vol 12 (1) ◽  
pp. 18-26
Author(s):  
Army Dita Serdani ◽  
Luqman Qurata Aini ◽  
Abdul Latief Abadi

Rice cultivation often face obstacles, and one of them is bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The application of endophytic bacteria is one of solutions to overcome this problem. Endophytic bacteria are non-pathogenic bacteria, which live in plant tissues. These bacteria could be isolated from the plant tissues. They may adapt to the plant tissues and produce antibiosis that could increase the plant resistance. Therefore, objectives of the research were to isolate the endophytic bacteria from healthy plant tissues and to identify them through morphology, physiology, biochemistry, and molecular. Method of the research was explorative along with three principal activities, such as isolation, selection, and identification on the potential endophytic bacteria. The isolation of the endophytic bacteria from healthy rice tissues has resulted 53 isolates and five of them have antagonistic ability in vitro against Xoo. Isolate ak9 has the highest antagonistic ability, 7.67 mm, in comparison with other isolates. Results of identification showed that those five potential bacteria have close relations, such as da3 with Bacillus cereus, isolate ak9 with Burkholderia sp., isolate ak30 with Enterobacter sp and isolate da9, as well as ak15 are Corynebacterium sp.


2018 ◽  
Vol 12 (1) ◽  
pp. 18-26
Author(s):  
Army Dita Serdani ◽  
Luqman Qurata Aini ◽  
Abdul Latief Abadi

Rice cultivation often face obstacles, and one of them is bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The application of endophytic bacteria is one of solutions to overcome this problem. Endophytic bacteria are non-pathogenic bacteria, which live in plant tissues. These bacteria could be isolated from the plant tissues. They may adapt to the plant tissues and produce antibiosis that could increase the plant resistance. Therefore, objectives of the research were to isolate the endophytic bacteria from healthy plant tissues and to identify them through morphology, physiology, biochemistry, and molecular. Method of the research was explorative along with three principal activities, such as isolation, selection, and identification on the potential endophytic bacteria. The isolation of the endophytic bacteria from healthy rice tissues has resulted 53 isolates and five of them have antagonistic ability in vitro against Xoo.  Isolate ak9 has the highest antagonistic ability, 7.67 mm, in comparison with other isolates. Results of identification showed that those five potential bacteria have close relations, such as da3 with Bacillus cereus, isolate ak9 with Burkholderia sp., isolate ak30 with Enterobacter sp and isolate da9, as well as ak15 are Corynebacterium sp.   


2022 ◽  
Vol 12 ◽  
Author(s):  
Shan-Shan Wang ◽  
Jia-Meng Liu ◽  
Jing Sun ◽  
Ya-Tao Huang ◽  
Nuo Jin ◽  
...  

As the unique component of Dendrobium, dendrobine-type sesquiterpenoid alkaloids (DSAs) possess a variety of medicinal properties. It has been well documented that plant endophytes can in vitro synthesize secondary metabolites identical or similar to metabolites produced by their host plants. This study aimed to investigate the composition and distribution of endophytic bacteria of Dendrobium stems by Illumina MiSeq platform sequencing and cultivation-dependent methods and then to assess the potential for endophytic bacteria to produce DSAs. Results indicated that it was necessary to combine both cultivation-dependent and cultivation-independent methods to analyze the community structure of endophytic bacterial in plants comprehensively. The length of the Dendrobium stems influenced the endophytic bacterial community. The diversity and richness of endophytic bacteria in group J10_15cm of stems were the highest, which showed a significant difference from the other stem groups. However, there was no certain connection between the diversity and richness of endophytic bacteria and the content of dendrobine. It was most likely due to the influence of several specific endophytic bacteria genera, such as Sphingomonas and Rhodococcus. Athelia rolfsii, Myrothecium roridum, as pathogenic fungi, and Pectobacterium carotovorum subsp. actinidiae, as pathogenic bacteria of Dendrobium, were used to determine the antimicrobial activities. In these assays, six strains belonging to five genera showed antimicrobial activity against at least two phytopathogens. The strain BL-YJ10_15-29 (Paracoccus pueri THG-N2.35, 98.98%) showed the best antimicrobial activity against the three phytopathogens. In addition, 2 DSAs (6-hydroxydendrobine and nobilonine) were identified in the fermentation supernatant of the strain CM-YJ10_15-44 (Pseudomonas protegens CHA0, 99.24%), whereas the whole-genome analysis results further demonstrated that the precursors of the two DSAs [geranyl-PP and (E, E)-famesyl-PP] were synthesized mainly through the methyl-D-erythritol 4-phosphate pathway in this strain. This study provides new insight into the studies on the biosynthesis of DSAs and provides potential biocontrol bacteria.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


Author(s):  
Guru Kumar Dugganaboyana ◽  
Chethankumar Mukunda ◽  
Suresh Darshini Inakanally

In recent years, green nanotechnology-based approaches using plant materials have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the seed extract of the Eugenia uniflora L. (E.uniflora). Characterization was done using UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV-Visible spectroscopy (at 466 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in seed of E.uniflora extract accountable for the reduction of Ag+ ion and the stabilization of AgNPs was investigated. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AgNPs were evaluated for their antibacterial and along with their antidiabetic potential. The results showed that AgNPs are extremely effective with potent antidiabetic potential at a very low concentration. It also exhibited potential antibacterial activity against the three tested human pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. It could be concluded that E. uniflora seed extract AgNPs can be used efficiently for in vitro evaluation of their antibacterial and antidiabetic effects with potent biomedical applications.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2020 ◽  
Vol 20 (10) ◽  
pp. 831-840
Author(s):  
Weibin Li

Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.


Sign in / Sign up

Export Citation Format

Share Document