scholarly journals Importance of antibiotic production in antagonism of selected Streptomyces species to two soil-borne plant pathogens.

1981 ◽  
Vol 34 (7) ◽  
pp. 830-835 ◽  
Author(s):  
CRAIG S. ROTHROCK ◽  
DAVID GOTTLIEB

New antibiotics are needed, ( a ) to control diseases that are refractory to existing ones either because of intrinsic or acquired drug resistance of the pathogen or because inhibition of the disease is difficult, at present, without damaging the host (fungal and viral diseases, and tumours), ( b ) for the control of plant pathogens and of invertebrates such as helminths, insects, etc., and ( c ) for growth promotion in intensive farming. Numerous new antibiotics are still being obtained from wild microbes, especially actinomycetes. Chemical modification of existing compounds has also had notable success. Here we explore the uses, actual and potential, of genetics to generate new antibiotics and to satisfy the ever-present need to increase yield. Yield improvement has depended in the past on mutation and selection, combined with optimization of fermentation conditions. Progress would be greatly accelerated by screening random recombinants between divergent high-yielding strains. Strain improvement may also be possible by the introduction of extra copies of genes of which the products are rate-limiting, or of genes conferring beneficial growth characteristics. Although new antibiotics can be generated by mutation, either through disturbing known biosyntheses or by activating ‘silent’ genes, we see more promise in interspecific recombination between strains producing different secondary metabolites, generating producers of ‘hybrid’ antibiotics. As with proposals for yield improvement, there are two major strategies for obtaining interesting recombinants of this kind: random recombination between appropriate strains, or the deliberate movement of particular biosynthetic abilities between strains. The development of protoplast technology in actinomycetes, fungi and bacilli has been instrumental in bringing these idealized strategies to the horizon. Protoplasts of the same or different species can be induced to fuse by polyethylene glycol. At least in intraspecific fusion of streptomycetes, random and high frequency recombination follows. Protoplasts can also be used as recipients for isolated DNA, again in the presence of polyethylene glycol, so that the deliberate introduction of particular genes into production strains can be realistically envisaged. Various kinds of DNA cloning vectors are being developed to this end. Gene cloning techniques also offer rich possibilities for the analysis of the genetic control of antibiotic biosynthesis, knowledge of which is, at present, minimal. The information that should soon accrue can be expected to have profound effects on the application of genetics to industrial microbiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuckcris P. Tenebro ◽  
Dana Joanne Von L. Trono ◽  
Carmela Vannette B. Vicera ◽  
Edna M. Sabido ◽  
Jovito A. Ysulat ◽  
...  

AbstractThe marine ecosystem has become the hotspot for finding antibiotic-producing actinomycetes across the globe. Although marine-derived actinomycetes display strain-level genomic and chemodiversity, it is unclear whether functional traits, i.e., antibiotic activity, vary in near-identical Streptomyces species. Here, we report culture-dependent isolation, antibiotic activity, phylogeny, biodiversity, abundance, and distribution of Streptomyces isolated from marine sediments across the west-central Philippines. Out of 2212 marine sediment-derived actinomycete strains isolated from 11 geographical sites, 92 strains exhibited antibacterial activities against multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 16S rRNA and rpoB gene sequence analyses confirmed that antibiotic-producing strains belong to the genus Streptomyces, highlighting Streptomyces parvulus as the most dominant species and three possible new species. Antibiotic-producing Streptomyces strains were highly diverse in Southern Antique, and species diversity increase with marine sediment depth. Multiple strains with near-identical 16S rRNA and rpoB gene sequences displayed varying strength of antibiotic activities. The genotyping of PKS and NRPS genes revealed that closely related antibiotic-producing strains have similar BGC domains supported by their close phylogenetic proximity. These findings collectively suggest Streptomyces' intraspecies adaptive characteristics in distinct ecological niches that resulted in outcompeting other bacteria through differential antibiotic production.


2000 ◽  
Vol 66 (7) ◽  
pp. 2718-2725 ◽  
Author(s):  
Cheryl A. Whistler ◽  
Virginia O. Stockwell ◽  
Joyce E. Loper

ABSTRACT Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor ςS and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. Thelon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor ς32(ςH) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, ςH represents the third sigma factor (with ςS and ς70) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator ςS or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.


1957 ◽  
Vol 3 (7) ◽  
pp. 953-965 ◽  
Author(s):  
W. A. Taber ◽  
L. C. Vining

Antifungal preparations were obtained from cultures of Streplomyces PRL 1642 by solvent extraction of the solids collected after the pH was adjusted to 3.5. The active factor, named amidomycin, was purified by repeated crystallization from aqueous ethanol or petrol (b.p. 60°–80 °C.) to give stable, colorless, optically active needles, m.p. 192 °C.Amidomycin suspended in agar media retarded the growth of many filamentous fungi and noticeably inhibited the plant pathogens Ustilago maydis, Ustilago trebouxii, as well as the human pathogen, Hormodendrum pedrosoi. It also inhibited the germination of uredospores of Puccinia graminis at low concentrations. Certain yeasts were completely inhibited by small concentrations of amidomycin; the quantity required was affected by the number of cells in the inoculum.None of the bacteria examined was inhibited by this antibiotic. At certain concentrations it was lethal to Candida albicans as determined by the inability of previously exposed and washed cells to grow on nutrient agar.Although a few isolated colonies of Candida albicans usually developed on plates containing approximately double the concentration required to inhibit growth of the inoculum streak, serial transfer of progeny from such colonies onto agar containing amidomycin did not produce cultures having progressively increasing resistance.Two degradation products of amidomycin, D(–)-valine and 3,6-diisopropyl-2,5-diketomorpholine, are inactive.


2019 ◽  
Vol 10 (3) ◽  
pp. 2142-2152
Author(s):  
Suad A Al-Hilu ◽  
Wisam H Al-Shujairi

Various of Streptomyces species have two kinds of plasmids, circular plasmids (8 to 31 kb) and linear plasmids (12 to 1700 kb). Covalently closed circular (CCC) plasmids are profuse in the genus of Streptomyces and involved in production and resistance of antibiotics by genetic controlling. We collected fifty clinical soil samples from different regions in Al-Najaf Al-Ashraf province/Iraq. The samples included five from Al-Ghadeer Quarter, five from Al-Karama Quarter, 10 from Kufa University, five from Al-Ameer Quarter, four from Al-Forat Quarter, 10 from North Quarters and eleven from desert roads in Al-Najaf. Diluted samples were cultured on Yeast extract Malt extract (YEME) agar medium as a selective medium; then the presumptive Streptomyces colonies were subcultured on Tryptone Yeast extract (TYE) agar, then incubation at 37ᵒC for 7 days. Seven biochemical tests for identification of Streptomyces isolates these are: Catalase test, Oxidase test, Urase test, Kligler Iron Agar test (KIA), Simmon᾽s Citrate test, addition to MacConkey agar test and Mannitol Salt agar test. Five antibiotic discs were used for detection of antibiotic sensitivity of the Streptomyces isolates; these are: Tetracycline, Gentamycin, Vancomycin, Ampicillin, Erythromycin. The sensitivity of the antibiotics was observed by recorded the diameter of inhibition zone around the discs. Two test bacteria (Staphylococcus aureus and E. coli) were used for the determination of antibacterial activity. Plasmid isolation was done by the alkaline lysis method. This method is characterized by the rapid isolation of DNA from Streptomyces. Then, detection of Plasmid DNA occurred by using agarose gel electrophoresis.


Author(s):  
Mihaela Ursan ◽  
Oana Alina Boiu-Sicuia ◽  
Cătălina Voaides ◽  
Vasilica Stan ◽  
Corina Bubueanu ◽  
...  

Abstract The excessive use of synthetic pesticides for plant pathogens control could cause possible harmful side-effects to humans and animals, environmental pollution, residual toxicity, affects soil characteristics or induce the development of fungal resistance. Alternative ways for fungal contamination control involve natural products, based on microorganisms, many of them being already available for use. The selection and characterization of new biological agents useful for plant pathogens control are permanent goals for plant protection researches. In the last decade, several studies revealed that Streptomyces species are promising biocontrol agents against a wide range of phytopathogenic fungi, including Fusarium spp., one of the most important wheat pathogens. In our study, 60 strains of Streptomyces spp. were isolated from soil or compost and evaluated for in vitro antifungal abilities by dual confrontation method. At least 30% of the isolates presented inhibitory activity against F. culmorum and F. graminearum. The bacterial strains were also tested for their ability to produce various bioactive compounds, possible involved in fungal inhibition. The capacity of some of the bacterial isolates to produce cellulases, amylases, lipases and volatile metabolites was proved. In addition, a new screening method for chitinases production was developed, based on the use of a combination of Congo red and Lugol solutions, which allowed the detection of chitinases in several Streptomyces spp. strains. Moreover, the reduction of the level of some Fusarium mycotoxins was detected by HPTLC analysis. As a conclusion, antagonistic interactions between Streptomyces isolates and fusaria could involve antibiosis, competition and parasitism and suggested that at least some of the selected isolates could be used in obtaining biological control products.


2021 ◽  
Vol 2 (4) ◽  
pp. 151-158
Author(s):  
Duygu Seren Özyılmaz ◽  
Muhammed Hasan Akyıl

2019 ◽  
Vol 113 (1) ◽  
pp. 123-142 ◽  
Author(s):  
Hao Yan ◽  
Xiaorui Lu ◽  
Di Sun ◽  
Shuai Zhuang ◽  
Qiong Chen ◽  
...  

2020 ◽  
Vol 33 (7) ◽  
pp. 902-910
Author(s):  
Zhan-Bin Sun ◽  
Qi Wang ◽  
Man-Hong Sun ◽  
Shi-Dong Li

Clonostachys chloroleuca is a mycoparasite used for biocontrol of numerous fungal plant pathogens. Sequencing of the transcriptome of C. chloroleuca following mycoparasitization of the sclerotia of Sclerotinia sclerotiorum revealed significant upregulation of a mitogen-activated protein kinase (MAPK)-encoding gene, crmapk. Although MAPKs are known to regulate fungal growth and development, the function of crmapk in C. chloroleuca mycoparasitism is unclear. In this study, we investigated the role of crmapk in C. chloroleuca mycoparasitism through gene knockout and complementation. Deletion of crmapk had no influence on the C. chloroleuca morphological characteristics but could significantly reduce the mycoparasitic ability to sclerotia and biocontrol capacity to soybean Sclerotinia stem rot; crmapk complementation restored these abilities. Transcriptome analysis between Δcrmapk and the wild-type strain revealed numerous genes were significantly down-regulated after crmapk deletion, including cytochrome P450, transporters, and cell wall–degrading enzymes (CWDEs). Our findings indicate that crmapk influences C. chloroleuca mycoparasitism by regulation of genes controlling the activity of CWDEs or antibiotic production. This study provides a basis for further studies of the molecular mechanism of C. chloroleuca mycoparasitism.


2002 ◽  
Vol 184 (18) ◽  
pp. 5151-5157 ◽  
Author(s):  
Noriyasu Shikura ◽  
Junji Yamamura ◽  
Takuya Nihira

ABSTRACT From Streptomyces virginiae, in which production of streptogramin antibiotic virginiamycin M1 and S is tightly regulated by a low-molecular-weight Streptomyces hormone called virginiae butanolide (VB), which is a member of the γ-butyrolactone autoregulators, the hormone biosynthetic gene (barS1) was cloned and characterized by heterologous expression in Escherichia coli and by gene disruption in S. virginiae. The barS1 gene (a 774-bp open reading frame encoding a 257-amino-acid protein [M r, 27,095]) is situated in the 10-kb regulator island surrounding the VB-specific receptor gene, barA. The deduced BarS1 protein is weakly homologous to β-ketoacyl-acyl carrier protein/coenzyme A reductase and belongs to the superfamily of short-chain alcohol dehydrogenase. The function of the BarS1 protein in VB biosynthesis was confirmed by BarS1-dependent in vitro conversion of 6-dehydro-VB-A to VB-A, the last catalytic step in VB biosynthesis. Of the four possible enantiomeric products from racemic 6-dehydro-VB-A as a substrate, only the natural enantiomer of (2R,3R,6S)-VB-A was produced by the purified recombinant BarS1 (rBarS1), indicating that rBarS1 is the stereospecific reductase recognizing (3R)-isomer as a substrate and reducing it stereospecifically to the (6S) product. In the ΔbarS1 mutant created by homologous recombination, the production of VB as well as the production of virginiamycin was lost. The production of virginiamycin by the ΔbarS1 mutant was fully recovered by the external addition of VB to the culture, which indicates that the barS1 gene is essential in the biosynthesis of the autoregulator VBs in S. virginiae and that the failure of virginiamycin production was a result of the loss of VB production.


Sign in / Sign up

Export Citation Format

Share Document