AMIDOMYCIN, A NEW ANTIBIOTIC FROM A STREPTOMYCES SPECIES. PRODUCTION, ISOLATION, ASSAY, AND BIOLOGICAL PROPERTIES

1957 ◽  
Vol 3 (7) ◽  
pp. 953-965 ◽  
Author(s):  
W. A. Taber ◽  
L. C. Vining

Antifungal preparations were obtained from cultures of Streplomyces PRL 1642 by solvent extraction of the solids collected after the pH was adjusted to 3.5. The active factor, named amidomycin, was purified by repeated crystallization from aqueous ethanol or petrol (b.p. 60°–80 °C.) to give stable, colorless, optically active needles, m.p. 192 °C.Amidomycin suspended in agar media retarded the growth of many filamentous fungi and noticeably inhibited the plant pathogens Ustilago maydis, Ustilago trebouxii, as well as the human pathogen, Hormodendrum pedrosoi. It also inhibited the germination of uredospores of Puccinia graminis at low concentrations. Certain yeasts were completely inhibited by small concentrations of amidomycin; the quantity required was affected by the number of cells in the inoculum.None of the bacteria examined was inhibited by this antibiotic. At certain concentrations it was lethal to Candida albicans as determined by the inability of previously exposed and washed cells to grow on nutrient agar.Although a few isolated colonies of Candida albicans usually developed on plates containing approximately double the concentration required to inhibit growth of the inoculum streak, serial transfer of progeny from such colonies onto agar containing amidomycin did not produce cultures having progressively increasing resistance.Two degradation products of amidomycin, D(–)-valine and 3,6-diisopropyl-2,5-diketomorpholine, are inactive.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2607 ◽  
Author(s):  
Katharina Schuhladen ◽  
Barbara Lukasiewicz ◽  
Pooja Basnett ◽  
Ipsita Roy ◽  
Aldo R. Boccaccini

Polyhydroxyalkanoates (PHAs), due to their biodegradable and biocompatible nature and their ability to be formed in complex structures, are excellent candidates for fabricating scaffolds used in tissue engineering. By introducing inorganic compounds, such as bioactive glasses (BGs), the bioactive properties of PHAs can be further improved. In addition to their outstanding bioactivity, BGs can be additionally doped with biological ions, which in turn extend the functionality of the BG-PHA composite. Here, different PHAs were combined with 45S5 BG, which was additionally doped with copper in order to introduce antibacterial and angiogenic properties. The resulting composite was used to produce scaffolds by the salt leaching technique. By performing indirect cell biology tests using stromal cells, a dose-depending effect of the dissolution products released from the BG-PHA scaffolds could be found. In low concentrations, no toxic effect was found. Moreover, in higher concentrations, a minor reduction of cell viability combined with a major increase in VEGF release was measured. This result indicates that the fabricated composite scaffolds are suitable candidates for applications in soft and hard tissue engineering. However, more in-depth studies are necessary to fully understand the release kinetics and the resulting long-term effects of the BG-PHA composites.


2008 ◽  
Vol 7 (11) ◽  
pp. 2008-2011 ◽  
Author(s):  
Olviyani Nasution ◽  
Kavitha Srinivasa ◽  
Minsun Kim ◽  
Yeo-Jung Kim ◽  
Wankee Kim ◽  
...  

ABSTRACT In this study, we demonstrate that hyphal differentiation is induced by the subtoxic concentration of exogenous H2O2 in Candida albicans. This finding is confirmed by the changing intracellular concentration of H2O2. In order to induce the same level of differentiation, low concentrations of exogenous H2O2 are required for the null mutants of the thiol-specific antioxidant and catalase, while higher concentrations are needed for cells treated with ascorbic acid, an antioxidant chemical.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Luiz Everson da Silva ◽  
Camila Confortin ◽  
Wanderlei do Amaral ◽  
Michele Debiasi Alberton ◽  
Milena Paim ◽  
...  

Abstract The Atlantic Forest is regarded a rich source of aromatic plants with a broad spectrum of biological properties. The leaves of seven Piper species were collected from the Atlantic Forest domain in the coastal region of Paraná state in winter (W) and spring (S). The volatile oils were extracted from the leaves through hydrodistillation method. The volatile oils were characterized by means of GC-FID and GC-MS. Sesquiterpenes were among the major compounds in all species studied, with many dozens of representatives. However, very low concentrations of monoterpenes were observed; α-pinene in Piper mosenii and P. cernuum, δ-3-carene in P. rivinoides, camphene and β-pinene in P. cernuum are exceptions. The arylpropanoides myristicine and elemicin were found in considerable amount in P. diospyrifolium (26.2%/S) and P. mosenii (16.4%/W), respectively. These oils were also screened for inhibitory activities against acetylcholinesterase (AChE) and α-glucosidase (AG). For AChE the most active samples were P. diospyrifolium, P. aduncum and P. cernuum, with inhibiting level > 93%. For the less sensitive AG, the most promising candidates were P. diospyrifolium and P. mosenii, with inhibiting level > 65%. These results highlight the importance of native plants as renewable source of new inhibitors for AChE and AG. Further investigation is required to identify the most active constituents or fractions from the selected volatile oils.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 589-597
Author(s):  
DG Connaghan ◽  
CW Francis ◽  
DA Lane ◽  
VJ Marder

A new method is described for identifying low concentrations of circulating derivatives of fibrinogen and fibrin, even when present in heterogeneous mixtures. This technique is applicable to plasma and serum and uses electrophoresis in 2% agarose in the presence of sodium dodecyl sulfate (SDS) followed by immunological identification of separated derivatives, using radiolabeled antifibrinogen antiserum and autoradiography. Unique electrophoretic patterns distinguish plasmic derivatives of crosslinked fibrin from those of fibrinogen and also identify crosslinked fibrin polymers produced by the combined action of thrombin and factor XIII on fibrinogen. The assay is sensitive to a concentration of 0.1 micrograms/mL of fibrinogen in serum or plasma. Fibrin polymers, plasmic degradation products of fibrinogen, and plasmic degradation products of crosslinked fibrin were detected in the plasma or serum of a patient with disseminated intravascular coagulation. Plasmic derivatives of both fibrinogen and crosslinked fibrin appeared in serum in the course of fibrinolytic therapy for pulmonary embolism, whereas during acute myocardial infarction a marked increase in the proportion of fibrin polymers in plasma was found in comparison with normal controls. Thus, the procedure can distinguish between the simultaneous processes of fibrin polymer formation, fibrinogenolysis, and fibrinolysis, and is sufficiently sensitive to detect relevant quantities of derivatives in pathologic conditions.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 741 ◽  
Author(s):  
Ivica Blažević ◽  
Azra Đulović ◽  
Vedrana Čikeš Čulić ◽  
Franko Burčul ◽  
Ivica Ljubenkov ◽  
...  

Bunias erucago belongs to the Brassicaceae family, which represents a forgotten crop of the Euro-Mediterranean area. The aim of the present study was to determine the glucosinolate profile in different plant parts and biological properties (antioxidant, anticholinesterase, and cytotoxic activities) of the isolates containing glucosinolate breakdown products. The chemical profiles were determined by using HPLC-PDA-MS/MS of desulfoglucosinolates and GC-MS of glucosinolate degradation products. The analysis of B. erucago showed the presence of seven glucosinolates: gluconapin (1), glucoraphasatin (2), glucoraphenin (3), glucoerucin (4), glucoraphanin (5), glucotropaeolin (6), and glucosinalbin (7). The total glucosinolate content ranged from 7.0 to 14.6 µmol/g of dry weight, with the major glucosinolate glucosinalbin in all parts. The antioxidant activity of all volatile isolates was not notable. At a tested concentration of 227 μg/mL, flower hydro-distillate (FH) showed good AChE inhibition, i.e., 40.9%, while root hydro-distillate (RH) had good activity against BChE, i.e., 54.3%. FH showed the best activity against both tested human bladder cancer cell lines, i.e., against T24 after 72 h, which have IC50 of 16.0 μg/mL, and against TCCSUP after 48 h with IC50 of 7.8 μg/mL, and can be considered as highly active. On the other hand, RH showed weak activity against tested cancer cells.


1997 ◽  
Vol 41 (3) ◽  
pp. 544-550 ◽  
Author(s):  
B Ahlström ◽  
M Chelminska-Bertilsson ◽  
R A Thompson ◽  
L Edebo

The killing of Candida albicans by a series of amphiphilic quaternary ammonium compounds (QACs) with different hydrocarbon chain lengths was closely related to the binding of the compounds to the cells and damage of the cell membranes. The membrane damage was measured as the level of release of the UV-absorbing material into the medium in which the cells were suspended and as the level of uptake of propidium iodide in individual cells by flow cytometry. It was shown that of the compounds tested, hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide [CTAB]) bound most efficiently. Tetradecyl betainate chloride (B14), tetradecanoylcholine bromide (C14), tetradecyltrimethylammonium bromide (TTAB), and dodecyltrimethylammonium bromide (DTAB) followed and had declining degrees of binding efficiency. The proportion of CTAB bound was almost total at concentrations up to the critical micelle concentration (CMC) of the compound, whereas that of B14 was somewhat smaller. For the two remaining tetradecyl compounds (C14 and TTAB), still smaller proportions were bound at low concentrations, but the proportions rose disproportionally at increasing concentrations to a distinct maximum at concentrations of 0.2 to 0.5 times the CMC. We propose that interfacial micelle-like aggregates are formed at the cell surface as a step in the binding process. An analogous, but less conspicuous, maximum was seen for DTAB. Thus, great differences in the binding affinity of QACs with different hydrocarbon chains at different concentrations to C. albicans were observed. These differences were related to the CMC of the compound. In contrast, the binding of TTAB to Salmonella typhimurium 395 MS was almost total at low as well as high concentrations until saturation was attained, indicating fundamental differences between binding to the yeast and binding to gram-negative bacteria. The importance of lipid-type complexes or aggregates to the antifungal effect of membrane-active substances are discussed.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1224-1228 ◽  
Author(s):  
S Rajagopalan ◽  
SV Pizzo

Abstract The binding of human fibrinogen degradation fragments D1, E, X, and Y, as well as fibrin fragment D1 dimer, to mouse peritoneal macrophages was examined. A Scatchard plot of fragment D1 binding was biphasic, suggesting two classes of receptors. Fragments D1, D1 dimer, X, and Y in low concentrations bound to macrophages with high affinity (Kd = 23 to 73 X 10(-11) mol/L). Fragment E bound specifically but at a much lower level than the other fragments. Fragment D1 was able to compete for the binding of radiolabeled fragments X and Y but not radiolabeled fragment E. These studies indicate that fragments D and E are recognized by separate receptor systems but that all of the fibrinogen degradation products that contain the D domain are recognized by the same receptor system.


1987 ◽  
Vol 166 (6) ◽  
pp. 1836-1850 ◽  
Author(s):  
J I Weitz ◽  
A J Huang ◽  
S L Landman ◽  
S C Nicholson ◽  
S C Silverstein

Plasma levels of the HNE-derived fibrinopeptide A alpha 1-21 reflect in vivo enzyme activity. To provide a possible explanation for the presence of circulating A alpha 1-21 in individuals with normal plasma antiproteinase concentrations we investigated whether PMN-associated HNE is more resistant to inhibition than the free enzyme. PMN were stimulated to migrate across 125I-fibrinogen-coated nitrocellulose filters in response to 10(-7) M FMLP, and the extent of fibrinogenolysis was determined by measuring release of A alpha 1-21 and 125I-labeled fibrinogen degradation products. The fibrinogenolytic activity of migrating PMN was then compared with that of free HNE present in PMN lysates or secreted by PMN stimulated with FMLP. Whereas the fibrinogenolytic activity of soluble HNE was completely inhibited by low concentrations (1%) of plasma or serum and macromolecular antiproteinase (alpha 1 proteinase-inhibitor and soybean trypsin-inhibitor), even in the presence of undiluted plasma or serum the activity of the migrating PMN was incompletely blocked (81-85%). Further, concentrations of alpha 1 proteinase-inhibitor and soybean trypsin-inhibitor that totally inhibited free HNE activity also incompletely blocked (88-89%) the fibrinogenolytic activity of migrating PMN, indicating that FMLP-stimulated PMN demonstrate significant fibrinogenolytic activity in the presence of antiproteinases as small as 20,000 mol wt. A specific low molecular weight HNE inhibitor (MeO-Suc-Ala2-Pro-ValCH2Cl), however, totally blocked PMN-mediated fibrinogenolysis without affecting intracellular HNE activity, HNE secretion from PMN, or PMN migration in response to FMLP. These findings support the hypothesis that PMN migrating on a fibrinogen-coated surface form zones of close contact with fibrinogen, thus preventing access of plasma antiproteinases to HNE released at the cell-substrate interface. The occurrence of this phenomenon in vivo would explain the presence of circulating A alpha 1-21 in individuals with normal antiproteinase concentrations.


Sign in / Sign up

Export Citation Format

Share Document