scholarly journals Potential role of artificial intelligence in craniofacial surgery

2021 ◽  
Vol 22 (5) ◽  
pp. 223-231
Author(s):  
Jeong Yeop Ryu ◽  
Ho Yun Chung ◽  
Kang Young Choi

The field of artificial intelligence (AI) is rapidly advancing, and AI models are increasingly applied in the medical field, especially in medical imaging, pathology, natural language processing, and biosignal analysis. On the basis of these advances, telemedicine, which allows people to receive medical services outside of hospitals or clinics, is also developing in many countries. The mechanisms of deep learning used in medical AI include convolutional neural networks, residual neural networks, and generative adversarial networks. Herein, we investigate the possibility of using these AI methods in the field of craniofacial surgery, with potential applications including craniofacial trauma, congenital anomalies, and cosmetic surgery.

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Holly Burrows ◽  
Javad Zarrin ◽  
Lakshmi Babu-Saheer ◽  
Mahdi Maktab-Dar-Oghaz

It is becoming increasingly apparent that a significant amount of the population suffers from mental health problems, such as stress, depression, and anxiety. These issues are a result of a vast range of factors, such as genetic conditions, social circumstances, and lifestyle influences. A key cause, or contributor, for many people is their work; poor mental state can be exacerbated by jobs and a person’s working environment. Additionally, as the information age continues to burgeon, people are increasingly sedentary in their working lives, spending more of their days seated, and less time moving around. It is a well-known fact that a decrease in physical activity is detrimental to mental well-being. Therefore, the need for innovative research and development to combat negativity early is required. Implementing solutions using Artificial Intelligence has great potential in this field of research. This work proposes a solution to this problem domain, utilising two concepts of Artificial Intelligence, namely, Convolutional Neural Networks and Generative Adversarial Networks. A CNN is trained to accurately predict when an individual is experiencing negative emotions, achieving a top accuracy of 80.38% with a loss of 0.42. A GAN is trained to synthesise images from an input domain that can be attributed to evoking position emotions. A Graphical User Interface is created to display the generated media to users in order to boost mood and reduce feelings of stress. The work demonstrates the capability for using Deep Learning to identify stress and negative mood, and the strategies that can be implemented to reduce them.


2020 ◽  
Vol 10 (18) ◽  
pp. 6428
Author(s):  
Ronan Thenault ◽  
Kevin Kaulanjan ◽  
Thomas Darde ◽  
Nathalie Rioux-Leclercq ◽  
Karim Bensalah ◽  
...  

Artificial Intelligence (AI) is progressively remodeling our daily life. A large amount of information from “big data” now enables machines to perform predictions and improve our healthcare system. AI has the potential to reshape prostate cancer (PCa) management thanks to growing applications in the field. The purpose of this review is to provide a global overview of AI in PCa for urologists, pathologists, radiotherapists, and oncologists to consider future changes in their daily practice. A systematic review was performed, based on PubMed MEDLINE, Google Scholar, and DBLP databases for original studies published in English from January 2009 to January 2019 relevant to PCa, AI, Machine Learning, Artificial Neural Networks, Convolutional Neural Networks, and Natural-Language Processing. Only articles with full text accessible were considered. A total of 1008 articles were reviewed, and 48 articles were included. AI has potential applications in all fields of PCa management: analysis of genetic predispositions, diagnosis in imaging, and pathology to detect PCa or to differentiate between significant and non-significant PCa. AI also applies to PCa treatment, whether surgical intervention or radiotherapy, skills training, or assessment, to improve treatment modalities and outcome prediction. AI in PCa management has the potential to provide a useful role by predicting PCa more accurately, using a multiomic approach and risk-stratifying patients to provide personalized medicine.


Author(s):  
Nantheera Anantrasirichai ◽  
David Bull

AbstractThis paper reviews the current state of the art in artificial intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically machine learning (ML) algorithms, is provided including convolutional neural networks (CNNs), generative adversarial networks (GANs), recurrent neural networks (RNNs) and deep Reinforcement Learning (DRL). We categorize creative applications into five groups, related to how AI technologies are used: (i) content creation, (ii) information analysis, (iii) content enhancement and post production workflows, (iv) information extraction and enhancement, and (v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, ML-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of ML in domains with fewer constraints, where AI is the ‘creator’, remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human-centric—where it is designed to augment, rather than replace, human creativity.


2021 ◽  
pp. 69-79
Author(s):  
Virginia Ellyn Melnyk

AbstractKnitting punch cards codify different stitch patterns into binary patterns, telling the machine when to change color or to generate different stitch types. This research utilizes Neural Networks (NN) and image-based Generative Adversarial Networks (GAN), with an image database of knitting punch cards, to generate new punch card designs. The hypothesis is that artificial intelligence will learn the basic underlying structures of the punch cards and the pattern makeup that is inherent across patterns of different styles and cultures. Different neural networks were utilized throughout the research, such as Neural Style Transfer (NST), AdaIN Style Transfers, and StyleGAN2. The results from these explorations offer different insights into pattern design and various outcomes of the different neural networks. Ultimately physically testing these punch card designs, these patterns were knit on a domestic knitting machine, resulting in novel fabrication and design techniques that are both digital and craft-based.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhidong Shen ◽  
Ting Zhong

Artificial Intelligence has been widely applied today, and the subsequent privacy leakage problems have also been paid attention to. Attacks such as model inference attacks on deep neural networks can easily extract user information from neural networks. Therefore, it is necessary to protect privacy in deep learning. Differential privacy, as a popular topic in privacy-preserving in recent years, which provides rigorous privacy guarantee, can also be used to preserve privacy in deep learning. Although many articles have proposed different methods to combine differential privacy and deep learning, there are no comprehensive papers to analyze and compare the differences and connections between these technologies. For this purpose, this paper is proposed to compare different differential private methods in deep learning. We comparatively analyze and classify several deep learning models under differential privacy. Meanwhile, we also pay attention to the application of differential privacy in Generative Adversarial Networks (GANs), comparing and analyzing these models. Finally, we summarize the application of differential privacy in deep neural networks.


2021 ◽  
pp. 2150360
Author(s):  
Wanghao Ren ◽  
Zhiming Li ◽  
Yiming Huang ◽  
Runqiu Guo ◽  
Lansheng Feng ◽  
...  

Quantum machine learning is expected to be one of the potential applications that can be realized in the near future. Finding potential applications for it has become one of the hot topics in the quantum computing community. With the increase of digital image processing, researchers try to use quantum image processing instead of classical image processing to improve the ability of image processing. Inspired by previous studies on the adversarial quantum circuit learning, we introduce a quantum generative adversarial framework for loading and learning a quantum image. In this paper, we extend quantum generative adversarial networks to the quantum image processing field and show how to learning and loading an classical image using quantum circuits. By reducing quantum gates without gradient changes, we reduced the number of basic quantum building block from 15 to 13. Our framework effectively generates pure state subject to bit flip, bit phase flip, phase flip, and depolarizing channel noise. We numerically simulate the loading and learning of classical images on the MINST database and CIFAR-10 database. In the quantum image processing field, our framework can be used to learn a quantum image as a subroutine of other quantum circuits. Through numerical simulation, our method can still quickly converge under the influence of a variety of noises.


2020 ◽  
Vol 11 (2) ◽  
pp. 41-47
Author(s):  
Amandeep Kaur ◽  
Madhu Dhiman ◽  
Mansi Tonk ◽  
Ramneet Kaur

Artificial Intelligence is the combination of machine and human intelligence, which are in research trends from the last many years. Different Artificial Intelligence programs have become capable of challenging humans by providing Expert Systems, Neural Networks, Robotics, Natural Language Processing, Face Recognition and Speech Recognition. Artificial Intelligence brings a bright future for different technical inventions in various fields. This review paper shows the general concept of Artificial Intelligence and presents an impact of Artificial Intelligence in the present and future world.


Author(s):  
Ruohan Zhang ◽  
Akanksha Saran ◽  
Bo Liu ◽  
Yifeng Zhu ◽  
Sihang Guo ◽  
...  

Human gaze reveals a wealth of information about internal cognitive state. Thus, gaze-related research has significantly increased in computer vision, natural language processing, decision learning, and robotics in recent years. We provide a high-level overview of the research efforts in these fields, including collecting human gaze data sets, modeling gaze behaviors, and utilizing gaze information in various applications, with the goal of enhancing communication between these research areas. We discuss future challenges and potential applications that work towards a common goal of human-centered artificial intelligence.


2021 ◽  
Author(s):  
David Hall

<p>This talk gives an overview of cutting-edge artificial intelligence applications and techniques for the earth-system sciences. We survey the most important recent contributions in areas including extreme weather, physics emulation, nowcasting, medium-range forecasting, uncertainty quantification, bias-correction, generative adversarial networks, data in-painting, network-HPC coupling, physics-informed neural nets, and geoengineering, amongst others. Then, we describe recent AI breakthroughs that have the potential to be of greatest benefit to the geosciences. We also discuss major open challenges in AI for science and their potential solutions. This talk is a living document, in that it is updated frequently, in order to accurately relect this rapidly changing field.</p>


Sign in / Sign up

Export Citation Format

Share Document