scholarly journals SPECIAL ISSUE “ Roles of revegetation for preventing Sediment Disaster ” Relationship between tree root system and pull-out resistance under different soil conditions

2015 ◽  
Vol 41 (2) ◽  
pp. 301-307
Author(s):  
Keitaro YAMASE ◽  
Toko TANIKAWA ◽  
Hidetoshi IKENO ◽  
Chikage TODO ◽  
Mizue OHASHI ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Admas Alemu ◽  
Tileye Feyissa ◽  
Marco Maccaferri ◽  
Giuseppe Sciara ◽  
Roberto Tuberosa ◽  
...  

Abstract Background Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina. Results Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (− log10P ≥ 4) and 34 nominal (− log10P ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight). Conclusions After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions.


2018 ◽  
Vol 19 (12) ◽  
pp. 3888 ◽  
Author(s):  
Aurora Alaguero-Cordovilla ◽  
Francisco Gran-Gómez ◽  
Sergio Tormos-Moltó ◽  
José Pérez-Pérez

Plant roots exploit morphological plasticity to adapt and respond to different soil environments. We characterized the root system architecture of nine wild tomato species and four cultivated tomato (Solanum lycopersicum L.) varieties during early growth in a controlled environment. Additionally, the root system architecture of six near-isogenic lines from the tomato ‘Micro-Tom’ mutant collection was also studied. These lines were affected in key genes of ethylene, abscisic acid, and anthocyanin pathways. We found extensive differences between the studied lines for a number of meaningful morphological traits, such as lateral root distribution, lateral root length or adventitious root development, which might represent adaptations to local soil conditions during speciation and subsequent domestication. Taken together, our results provide a general quantitative framework for comparing root system architecture in tomato seedlings and other related species.


1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


2017 ◽  
Vol 44 (No. 2) ◽  
pp. 82-90 ◽  
Author(s):  
Balliu Astrit ◽  
Sallaku Glenda

The aim of this study was to investigate the effects of exogenously applied auxin over the rootstock cuttings on root morphology parameters and stand establishment rate of salt-stressed cutting grafted cucumber seedlings. For that purpose, before grafting, the cut ends of the rootstocks were soaked for few seconds into auxin solution (indole-3-acetic acid (IAA) or indole-3- butyric acid (IBA))at different concentrations and afterwards were grafted by the root pruned splice grafting (RPSG) method. Ten days after grafting, the grafted seedlings were transplanted into individual pots where two different levels of salt-stress (0 and 50 mM) were established. Root morphology parameters, as well as dry matter of the root system and the whole plants were successively analysed to randomly selected plants. Exogenous auxins improved root morphology parameters and restored root growth under salinity conditions. The best results were obtained through the application of IBA, which promoted a better rootstock – scion relationship, presumably due to faster development of phloem and xylem tubes, and the promotion of a vigorous root system which increases plant’s absorbing capabilities for water and nutrients under adverse soil conditions.


1975 ◽  
Vol 8 (1_suppl) ◽  
pp. 227-232 ◽  
Author(s):  
R Scott Russell ◽  
R Q Cannell ◽  
M J Goss

Direct drilling affects the pore size distribution in the soil, the distribution of organic debris on and within the soil, and the soil structure. These changes in turn affect the development of the root system of the crop, with consequential changes on its nutrient supply and early growth.


2019 ◽  
Vol 48 (No. 12) ◽  
pp. 549-564 ◽  
Author(s):  
J. Kodrík ◽  
M. Kodrík

Beech is, thanks to its root system, in general considered to be a wind-resistant woody plant species. Nevertheless, the research on beech root systems has revealed that it is not possible to mechanically divide the woody plants into deep rooted and shallow rooted, because their root systems are modified according to various stand conditions. The root system shape, growth and development are mostly influenced by soil conditions and groundwater level. In the case of a high groundwater level beech root systems do not form tap roots and the lateral roots are rather thin and weak. Important factor for the tree static stability is number of roots with diameter 3–10 cm. The most important for the tree stability are roots with diameter over 10 cm. Wood-destroying fungi have strong negative impact on tree static stability. There are differences between beech below-ground biomass growing in soils rich in nutrients and poor in nutrients. The total below-ground biomass of the beech stands poor in nutrients is higher.


1994 ◽  
Vol 72 (7) ◽  
pp. 963-975 ◽  
Author(s):  
Claire Atger ◽  
Claude Edelin

Since 1970, the architectural analysis of woody plants has given much information about structural and functional organization of tree crowns, their development, and reiteration patterns. In this study, we have extended this method to tree root systems. We describe the whole architecture of three species and we compare their root system and crown architectural patterns. Key words: architecture, tree, root system, crown, whole plant.


Sign in / Sign up

Export Citation Format

Share Document