Digital Twin-based Application for Design of Human-Machine Collaborative Assembly Production Lines

2020 ◽  
Vol 46 (1) ◽  
pp. 42-54
Author(s):  
Youngwook Nam ◽  
Sangho Lee ◽  
Donggun Lee ◽  
Sungju Im ◽  
Sang Do Noh
2021 ◽  
Vol 11 (10) ◽  
pp. 4620
Author(s):  
Niki Kousi ◽  
Christos Gkournelos ◽  
Sotiris Aivaliotis ◽  
Konstantinos Lotsaris ◽  
Angelos Christos Bavelos ◽  
...  

This paper discusses a digital twin-based approach for designing and redesigning flexible assembly systems. The digital twin allows modeling the parameters of the production system at different levels including assembly process, production station, and line level. The approach allows dynamically updating the digital twin in runtime, synthesizing data from multiple 2D–3D sensors in order to have up-to-date information about the actual production process. The model integrates both geometrical information and semantics. The model is used in combination with an artificial intelligence logic in order to derive alternative configurations of the production system. The overall approach is discussed with the help of a case study coming from the automotive industry. The case study introduces a production system integrating humans and autonomous mobile dual arm workers.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 9
Author(s):  
Yuchen Wang ◽  
Xingzhi Wang ◽  
Fei Tao ◽  
Ang Liu

Complexity management is one of the most crucial and challenging issues in manufacturing. As an emerging technology, digital twin provides an innovative approach to manage complexity in a more autonomous, analytical and comprehensive manner. This paper proposes an innovative framework of digital twin-driven complexity management in intelligent manufacturing. The framework will cover three sources of manufacturing complexity, including product design, production lines and supply chains. Digital twin provides three services to manage complexity: (1) real-time monitors and data collections; (2) identifications, diagnoses and predictions of manufacturing complexity; (3) fortification of human-machine interaction. A case study of airplane manufacturing is presented to illustrate the proposed framework.


Author(s):  
Johannes Olbort ◽  
Vladimir Kutscher ◽  
Maximilian Moser ◽  
Reiner Anderl

Abstract Organizing manufacturing in dynamic networks instead of inflexible production lines is one of the key aspects of Industry 4.0. This should serve to realize automation and effectiveness to a higher degree than previously achievable. For this modernization, Cyber-Physical Systems should be utilized, where a Digital Twin mirrors the behavior of its Physical Twin and makes the data during manufacturing externally available via communication interfaces. This Digital Twin should be an instantiation of a Digital Master, which must meet the requirements for communication in dynamically changing value-added networks. The networking capability of objects requires semantic information. This information is associated with rules for decision making within a value-added network. This paper addresses the need for research on how to add networking capabilities during the development of Digital Masters. With these added capabilities, the communication between Digital Masters and Twins in terms of a single part manufacturing simulation should be verifiable in a Digital Factory. For this purpose, the concept of this paper aims to outline guidelines on how to add networking capabilities to the single part, machines and other resources needed during manufacturing.


2020 ◽  
Vol 10 (21) ◽  
pp. 7758
Author(s):  
Alessandro Greco ◽  
Mario Caterino ◽  
Marcello Fera ◽  
Salvatore Gerbino

Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 13
Author(s):  
Ana María Valdeón Junquera ◽  
Javier García González ◽  
Joaquín Manuel Villanueva Balsera ◽  
Vicente Rodríguez Montequín

Smart Manufacturing is a goal to be achieved, and the most advanced manufacturing approaches are being used to pursue this objective. Within this context, industry development aims to attain an intelligent manufacturing using, for example, virtual models that simulate production lines. This paper presents the architecture of a Digital Twin for emulating the rolls replacement process within a wire rod rolling mill. The model is developed in Python, using a backtracking algorithm to select the suitable set of rolls as a first basic approach for the validation of the system. It may be used in the future to improve the production system automating the decision for the replacement of rolls as alternative to the current human-decision process.


CIRP Annals ◽  
2019 ◽  
Vol 68 (1) ◽  
pp. 499-502 ◽  
Author(s):  
Arne Bilberg ◽  
Ali Ahmad Malik

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000570-000585
Author(s):  
Mark A. Bachman ◽  
Jerry Liao ◽  
John Osenbach ◽  
Zafer Kutlu ◽  
Jaeyun Gim ◽  
...  

To reduce the RC latency, leading edge silicon nodes employ porous SiO2 dielectrics in the interconnect stack. Introduction of porosity lowers the dielectric constant, k, but also significantly decreases both the elastic modulus and fracture toughness of the dielectric. As such, devices manufactured in silicon processes that use low K (90nm, 65nm, and 55nm) and even more so extremely low K ( 45nm, 40nm, and 28nm) interlayer dielectrics are substantially more prone to fracture as a result of package induced stresses than non porous higher K dielectrics. Since the package stresses scale with die size and package body size and inversely with bump pitch, manufacture of large die and package size flip chip devices made with extremely low K dielectrics has proven to be challenging. The stress challenge is further exacerbated by the RoHS requirements for lead free packaging which requires higher process temperatures and somewhat higher yield point solders. The combination of increased stress and reduced mechanical robustness of porous dielectrics has lead to significant reliability and assembly yield issues that have in some cases slowed the introduction of 45nm and 40nm large die lead free flip chip into the market. The work summarized in this paper shows that devices designed to withstand stresses in combination with appropriate assembly processes and bill of materials, yield highly reliable, lead free flip chip packaged devices, with die sizes greater than 400mm2 and package sizes greater than 42.5mm on a side in commercial assembly production lines.


Author(s):  
Yan Douxi ◽  
Liu Qiang ◽  
Jiewu Leng ◽  
Zhang Ding ◽  
Rongli Zhao ◽  
...  

Abstract The mass personalization paradigm requires manufacturing enterprises to adapt to market changes quickly to meet customer demands. It also imposes higher requirements for designing intelligent production lines. Based on the digital twin (DT) technology, a rapid customized design method is proposed for developing new board-type furniture production lines. The DT has the characteristics of interactive virtual-reality mapping and fusion. It could provide design guidance and decision-support services in the design phase, yield the engineering analyzing ability to solve coupled problems, and finally generate the authoritative design scheme of the manufacturing system. A production line design platform is developed based on the DT model, which can parallelize the design process and reduce the design cycle. The parallel control between the physical world and digital space is achieved by establishing the DT network and perceiving the status of the physical equipment. Five key enabling technologies are introduced to provide the theoretical fundamentals for implementing the DT-based manufacturing system design approach. A board-type furniture production line is presented as a case study to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document