Large Die Size Lead Free Flip Chip Ball Grid Array Packaging Considerations for 40nm Fab Technology

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000570-000585
Author(s):  
Mark A. Bachman ◽  
Jerry Liao ◽  
John Osenbach ◽  
Zafer Kutlu ◽  
Jaeyun Gim ◽  
...  

To reduce the RC latency, leading edge silicon nodes employ porous SiO2 dielectrics in the interconnect stack. Introduction of porosity lowers the dielectric constant, k, but also significantly decreases both the elastic modulus and fracture toughness of the dielectric. As such, devices manufactured in silicon processes that use low K (90nm, 65nm, and 55nm) and even more so extremely low K ( 45nm, 40nm, and 28nm) interlayer dielectrics are substantially more prone to fracture as a result of package induced stresses than non porous higher K dielectrics. Since the package stresses scale with die size and package body size and inversely with bump pitch, manufacture of large die and package size flip chip devices made with extremely low K dielectrics has proven to be challenging. The stress challenge is further exacerbated by the RoHS requirements for lead free packaging which requires higher process temperatures and somewhat higher yield point solders. The combination of increased stress and reduced mechanical robustness of porous dielectrics has lead to significant reliability and assembly yield issues that have in some cases slowed the introduction of 45nm and 40nm large die lead free flip chip into the market. The work summarized in this paper shows that devices designed to withstand stresses in combination with appropriate assembly processes and bill of materials, yield highly reliable, lead free flip chip packaged devices, with die sizes greater than 400mm2 and package sizes greater than 42.5mm on a side in commercial assembly production lines.

2015 ◽  
Vol 2015 (1) ◽  
pp. 000787-000792
Author(s):  
E. Misra ◽  
T. Wassick ◽  
I. Melville ◽  
K. Tunga ◽  
D. Questad ◽  
...  

The introduction of low-k & ultra-low-k dielectrics, lead-free (Pb-free) solder interconnects or C4's, and organic flip-chip laminates for integrated circuits have led to some major reliability challenges for the semiconductor industry. These include C4 electromigration (EM) and mechanical failures induced with-in the Si chip due to chip-package interactions (CPI). In 32nm technology, certain novel design changes were evaluated in the last Cu wiring level and the Far Back End of Line levels (FBEOL) to strategically re-distribute the current more uniformly through the Pb-free C4 bumps and therefore improve the C4 EM capabilities of the technology. FBEOL process integration changes, such as increasing the thickness of the hard dielectric (SiNx & SiOx) and reducing the final via diameter, were also evaluated for reducing the mechanical stresses in the weaker BEOL levels and mitigating potential risks for mechanical failures within the Si chip. The supporting white-bump, C4 EM and electrical/mechanical modeling data that demonstrates the benefits of the design and integration changes will be discussed in detail in the paper. Some of the key processing and integration challenges observed due to the design and process updates and the corresponding mitigation steps taken will also be discussed.


Author(s):  
Gino Hung ◽  
Ho-Yi Tsai ◽  
Chun An Huang ◽  
Steve Chiu ◽  
C. S. Hsiao

A high reliability and high thermal performance molding flip chip ball grid arrays structure which was improved from Terminator FCBGA®. (The structure are shown as Fig. 1) It has many advantages, like better coplanarity, high through put (multi pes for each shut of molding process), low stress, and high thermal performance. In conventional flip chip structure, underfill dispenses and cure processes are a bottleneck due to low through put (dispensing unit by unit). For the high performance demand, large package/die size with more integrated functions needs to meet reliability criteria. Low k dielectric material, lead free bump especially and the package coplanarity are also challenges for package development. Besides, thermal performance is also a key concern with high power device. From simulation and reliability data, this new structure can provide strong bump protection and reach high reliability performance and can be applied for low-K chip and all kind of bump composition such as tin-lead, high lead, and lead free. Comparing to original Terminator FCBGA®, this structure has better thermal performance because the thermal adhesive was added between die and heat spreader instead of epoxy molding compound (EMC). The thermal adhesive has much better thermal conductivity than EMC. Furthermore, this paper also describes the process and reliability validation result.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
P. Borgesen ◽  
D. Blass ◽  
M. Meilunas

Underfilling will almost certainly improve the performance of an area array assembly in drop, vibration, etc. However, depending on the selection of materials, the thermal fatigue life may easily end up worse than without an underfill. This is even more true for lead free than for eutectic SnPb soldered assemblies. If reworkability is required, the bonding of the corners or a larger part of the component edges to the printed circuit board (PCB), without making contact with the solder joints, may offer a more attractive materials selection. A 30 mm flip chip ball grid array (FCBGA) component with SAC305 solder balls was attached to a PCB and tested in thermal cycling with underfills and corner/edge bonding reinforcements. Two corner bond materials and six reworkable and nonreworkable underfills with a variety of mechanical properties were considered. All of the present underfills reduced the thermal cycling performance, while edge bonding improved it by up to 50%. One set of the FCBGAs was assembled with a SnPb paste and underfilled with a soft reworkable underfill. Surprisingly, this improved the thermal cycling performance slightly beyond that of the nonunderfilled assemblies, providing up to three times better life than for those assembled with a SAC305 paste.


Sign in / Sign up

Export Citation Format

Share Document