scholarly journals EFFECTS OF CONTROLLED DRAINAGE ON SOIL WATER REGIME AND QUALITY IN LITHUANIA

AGROFOR ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Aurelija RUDZIANSKAITĖ ◽  
Stefanija MISEVIČIENĖ

Lithuania remains one of the most extensively drained of the Baltic and Nordiccountries. The overall drained area (ditches plus tile drains) totalled 87% of theagricultural land area. Many nutrients from soil are leached through drainageresulting in polluting streams (drain flow receivers) water. Drain flow is treated asa major determinant of water quality. Therefore, the reduction of nutrients enteringthe drains is very important. Controlled drainage conception, when the outflowheight is increased at the mouth, helps reduce drainage runoff and partially purifywater. The aim of the research was to establish controlled drainage influence on thesoil moisture regime, nitrogen and phosphorus leaching. Investigations werecarried out in sandy loam and loam soils in the Middle Lithuanian Lowland. Basedon studies, several tendencies were observed: when drainage outflow began, theamount of soil moisture in subsoil (50-80 cm layer of the soil) of controlleddrainage plot was higher than in the conventional drainage plot, and highermoisture supplies stayed for a longer period of time. Controlled drainage had nodirect impact on phosphorus and nitrogen concentrations but they were influencedby the leaching quantities of plant usable nutrients. The reason that in many caseslower nitrate nitrogen (54% of all measurements) and phosphorus concentrations(77% of all measurements) were found in the conventional system rather than inthe controlled drainage might be connected to the fact that the latter area containedpredominantly lighter textured soils (sandy loam) making it easier to wash awaythe nutrients unused by plant.

Author(s):  
Aurelija RUDZIANSKAITĖ ◽  
Stefanija MISEVIČIENĖ

Most of the soil chemical matters are soluble in the water; therefore changes in hydrological regime of ecosystem are closely related to the changes of nutrient leaching. Excess phosphorus causes eutrophication in surface waters. The aim of the research was to establish controlled drainage influence on the soil moisture regime, on the amount of mobile phosphorus in the soil and its leaching. Investigations were carried out in sandy loam and loam soils in the Middle Lithuanian Lowland from June 2014 to June 2015. During the study period precipitation was 93 % of the climate normals, the average temperature was 1.4 ° C higher than the climate normals. Based on preliminary studies, several tendencies were observed, that when drainage outflow began, the amount of soil moisture in subsoil (50–80 cm layer of the soil) of controlled drainage plot was higher than in the conventional drainage plot, and higher moisture supplies stayed for a longer period of time. Also the fluctuation (variation’s coefficient 24 %) of mobile P2O5. was higher. The Ptotal and PO4-P concentrations were lower in the controlled drainage than in the conventional drainage during winter – spring flood period, when water pressure was the highest (70 cm) in the outlet of drainage and water flowed through flap of the riser column


1981 ◽  
Vol 32 (4) ◽  
pp. 541 ◽  
Author(s):  
DM Gordon ◽  
CM Finlayson ◽  
AJ McComb

The trophic status of three shallow, freshwater lakes on the Swan coastal plain near Perth, Western Australia, was assessed from February 1975 to January 1976. Loch McNess is in a National Park, Lake Joondalup is in an area becoming urbanized, and Lake Monger is in a suburb near the centre of Perth. Monthly measurements were made of phytoplankton numbers and environmental parameters, including forms of nitrogen and phosphorus. Populations tended to be high when lake levels were low. Phytoplankton numbers were dominated by blue-green 'algae' in summer in each lake, with the lowest numbers in Loch McNess. Green algae were most prominent in autumn and winter. Diatoms were present at relatively lower numbers throughout the year. Phytoplankton numbers were strongly correlated with phosphorus levels, particularly for blue-green algae, and less so with nitrogen. Green algae were also strongly correlated with water conductivity. Nearly 80% of variance in phytoplankton numbers was accounted for in multiple linear regression by temperature, sunlight hours, depth, pH, conductivity and phosphate, organic phosphorus, ammonia, nitrate-nitrite, and organic nitrogen concentrations. Much of the variance was accounted for by the nutrients alone. Comparisons with data in the literature suggest that Lakes Joondalup and Monger are eutrophic by world standards, and are far more eutrophic than Loch McNess.


2014 ◽  
Vol 18 (6) ◽  
pp. 2191-2200 ◽  
Author(s):  
S. T. Harrington ◽  
J. R. Harrington

Abstract. The objective of this research was to investigate the relationship between water and sediment discharge on the transport of nutrients: nitrogen and phosphorus. Water discharge, suspended sediment concentration and dissolved and particulate forms of nitrogen and phosphorus were monitored on the 105 km2 River Owenabue catchment in Ireland. Water discharge was found to have an influence on both particulate and dissolved nutrient transport, but more so for particulate nutrients. The particulate portion of N and P in collected samples was found to be 24 and 39%, respectively. Increased particulate nitrogen concentrations were found at the onset of high discharge events, but did not correlate well to discharge. High concentrations of phosphorus were associated with increased discharge rates and the coefficient of determination (r2) between most forms of phosphorus and both discharge and suspended sediment concentrations were observed to be greater than 0.5. The mean TN yield is 4004 kg km−2 yr−1 for the full 29-month monitoring period with a mean PN yield of 982 kg km−2 yr−1, 25% of the TN yield with the contribution to the yield of PN and PP estimated to be 25 and 53% respectively. These yields represent a PN and PP contribution to the suspended sediment load of 5.6 and 0.28% respectively for the monitoring period. While total nitrogen and total phosphorus levels were similar to other European catchments, levels of bio-available phosphorus were elevated indicating a potential risk of eutrophication within the river.


1995 ◽  
Vol 31 (8) ◽  
pp. 141-145 ◽  
Author(s):  
A. H. W. Beusen ◽  
O. Klepper ◽  
C. R. Meinardi

A model is described that aims at predicting surface water quality from N- and P-inputs on a European scale. The model combines a GIS-based approach to estimate loads, geohydrological data to define model structure and statistical techniques to estimate parameter values. The model starts with an inventory of sources of N and P: agriculture, wastewater and (for N) atmospheric deposition. Nitrogen flows are assumed to follow both surface- and groundwater flows, while for phosphorus only surface water flow is taken into account. A calibration of loss terms of N and P (assumed to be constants for the whole of Europe) by comparing total inputs to measured loads shows good agreement between observations and calculated river discharges. For the coastal seas of Europe concentrations are calculated by assuming conservative behaviour of N and P. Freshwater quality problems occur in western Europe with its intensive agriculture and high population density and locally in southern Europe where dilution is low due to low water discharge. In the marine environment the main problem areas are the Baltic and Black seas, with much lower impacts in the North and Adriatic Sea; in other coastal waters human impacts are essentially negligible.


Dead Zones ◽  
2021 ◽  
pp. 89-105
Author(s):  
David L. Kirchman

The fertilizers commonly used by gardeners have many ingredients, but the biggest two are nitrogen and phosphorus, either of which can limit plant and algal growth. The idea that only one nutrient limits growth is encapsulated by Liebig’s Law of the Minimum, named after Justus von Liebig, a 19th-century German chemist. Liebig is also called the “father of fertilizer” because of his work on formulating and promulgating commercial fertilizers. However, he wasn’t the first to discover the Law, and he was wrong about the most important ingredient of fertilizers. This chapter outlines the arguments among limnologists, oceanographers, and geochemists about whether nitrogen or phosphorus sets the rate of algal growth and thus production of the organic material that drives oxygen depletion. The chapter discusses that the limiting nutrient varies with the type of aquatic habitat. In dead zones like the Gulf of Mexico, parts of the Baltic Sea, and Chesapeake Bay, bioassay experiments have shown that nitrogen is usually limiting. The nitrogen necessary for fertilizer and ammunitions comes from the Haber-Bosch process. The chapter reviews the life of one of the two German inventors, Fritz Haber, and how it was full of contradictions if not tragedy.


2020 ◽  
Vol 63 (1) ◽  
pp. 73-84
Author(s):  
Izabela Michalak

AbstractPoland, a Central European country with a Baltic Sea coastline of 634 km, has no tradition of nearshore cultivation of seaweeds or utilization of this biomass. The Baltic is known for its eutrophication. Numerous attempts are being made to combat this phenomenon as well as to find applications for the beach-cast and free-floating macroalgae, which are a nuisance in many areas. Seaweed harvesting can mitigate eutrophication by the reduction of nutrients – especially nitrogen and phosphorus – in water. Collected biomass can be utilised in agriculture as biofertilisers and used as a valuable raw material for the manufacture of high-value macroalgal products, such as biostimulants of plant growth, feed additives, components of cosmetics, food additives or biogas as a form of renewable energy. The Baltic abounds in green macroalgae (Ulva sp. and Cladophora sp.) with brown (Ectocarpus sp., Pilayella sp., Fucus vesiculosus) and red algae (Vertebrata sp., Ceramium sp., Furcellaria sp.) occurring in much smaller quantities. These seaweeds are also of great interest as bioindicators of environmental pollution. The seaweeds in the southern Baltic Sea still represent an unexploited biomass and can be a huge source of innovation. New approaches towards macroalgal utilisation are in demand.


AMBIO ◽  
2019 ◽  
Vol 48 (11) ◽  
pp. 1325-1336 ◽  
Author(s):  
Alena Bartosova ◽  
René Capell ◽  
Jørgen E. Olesen ◽  
Mohamed Jabloun ◽  
Jens Christian Refsgaard ◽  
...  

Abstract The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1747
Author(s):  
Agnieszka Rutkowska ◽  
Piotr Skowron

Two factorial field experiments were carried out between 2003 and 2018 in the Experimental Stations in Eastern and Western Poland using four crop rotations with winter oilseed rape, winter wheat, maize and spring barley. The initial value of phosphorus (P) in Grabów soil was 69.8 mg P·kg−1 soil and in Baborówko soil it was 111.3 mg P·kg−1 soil (Egner-Riehm Double-Lactate DL). P fertilizer was added annually at 39 kg P·ha−1 under winter oilseed rape, 35 kg P·ha−1 under maize and 31 kg P·ha−1 under wheat and barley using superphosphate and nitrogen (N), which was added at five levels (30–250 kg N·ha−1) per year as ammonium nitrate in addition to controls with no added fertilizer. Through the several years of the experiment, P fertilizer had no effect on crop N use efficiency (NUE) nor crop productivity. There was significant soil P mining particularly in the high-N fertilizer trials causing a reduction in the content of available soil P by up to 35%. This work recommends that, based on soil P analysis, P fertilizer should not be added to high-P soils. This practice may continue uninterrupted for several years (16 in this case) until the excess soil P has been reduced. This mechanism of removal of “legacy” P from soil has major implications in reducing runoff P into the Baltic Sea drainage area and other water bodies.


Sign in / Sign up

Export Citation Format

Share Document